Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm D đối xứng điểm H qua trục AB.
Suy ra AB là đường trung trực của HD
⇒ AH = AD (tính chất đường trung trực)
⇒ ∆ ADH cân tại A
Suy ra: AB là tia phân giác của ∠ (DAH)
⇒ ∠ (DAB) = ∠ A 1
Điểm H và điểm E đối xứng qua trục AC
⇒ AC là đường trung trực của HE
⇒ AH = AE (tính chất đường trung trực) ⇒ ∆ AHE cân tại A
Suy ra: AC là đường phân giác của góc (HAE) ⇒ ∠ A 2 = ∠ (EAC)
⇒ D, A, E thẳng hàng
Ta có: AD = AE (vì cùng bằng AH)
Suy ra điểm A là trung điểm của đoạn DE.
Vậy điểm D đối xứng với điểm E qua điểm A
∆ ADH cân tại A ⇒ ∠ AHD = ∠ D.
∆ AEH cân tại A ⇒ ∠ AHE = ∠ E.
⇒ ∠DHE = ∠ AHD + ∠ AHE = ∠ D + ∠ E
Mà ∠ DHE + ∠ D + ∠ E = 180 0
⇒ ∠ DHE = 90 0
Vậy ∆ DHE vuông tại H.
a: Ta có: H và E đối xứng nhau qua AB
nên AH=AE và AB là tia phân giác của góc HAE(1)
Ta có: H và D đối xứng nhau qua AC
nên AH=AD và AC là tia phân giác của góc HAD(2)
Từ (1) và (2) suy ra D và E đối xứng nhau qua A
Xét ∆ ADB và ∆ AHB có: ∠ DAB = ∠ HAB; AB chung; DA = AH
⇒ ∆ ADB = ∆ AHB (c.g.c)
⇒ ∠ (ADB) = ∠ (AHB) = 90 0 ⇒ BD ⊥ DE
Chứng minh tương tự ∠ AEC = ∠ AHC = 90 0 ⇒ EC ⊥ DE
⇒ BD // EC và có ∠ (BDE) = 90 0
⇒ BDEC là hình thang vuông.
∆ ADB = ∆ AHB ⇒ BD = BH.
∆ AEC = ∆ AHC ⇒ CE = CH.
Vậy BD + CE = BH + CH = BC.
Bạn tự vẽ hình:D
a,Ta có: + D là điểm đối xứng với H qua AC
=>AC là đường trung trực của t/g DAH
=>AD=AH(1)
+ E là điểm đối xứng với H qua AB
=>AB là đường trung trực của t/g EAH
=>AH=AE(2)
Từ (1) và (2)=>AD=AE(3)
Vì AE=AH=>t/g EAH cân tại A=>AB đồng thời là đường p/g
=>^EAB=^HAB
Vì AH=AD=>t/g HAD cân tại A=>AC đồng thời là đường p/g
=>^HAC=^DAC
Mà ^BAH+^CAH=90o
Do đó:^EAB + ^BAH + ^HAC + ^CAD
=> 2(^BAH) + 2(^HAC)
=> 2(^BAH + ^HAC)
=>2.90o =180o
=>E,A,D thẳng hàng (4)
Từ (3) và (4)=>D đx E qua A
Ta có: H và D đối xứng nhau qua AB
nên AH=AD
=>AB là tia phân giác của góc HAD(1)
Ta có: H và E đối xứng nhau qua AC
nên AE=AH
=>AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)