K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2022

a. Xét tam giác ABC có:

DE//BC (gt)

=>\(\dfrac{DA}{DB}=\dfrac{EA}{EC}\)(định lý Ta-let) (1)

Xét tam giác ADE có:

AD//CF (gt)

=>\(\dfrac{EA}{EC}=\dfrac{DE}{EF}\)(định lý Ta-let) (2)

Từ (1) và (2) suy ra:\(\dfrac{DA}{DB}=\dfrac{ED}{FE}\)

15 tháng 1 2022

câu b) bạn cố tình kẻ EI//BC hay sao vậy nhỉ?

20 tháng 7 2017
  1. 22222222​​
  2. 2
  3. 3
  4. 3
  5. 3
  6. 3
  7. 3
  8. 3
  9. 3
  10. 3
1 tháng 3 2022

gfvfvfvfvfvfvfv555

  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ;...
Đọc tiếp
  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD.                              d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh GH // AC và PT vuông góc  với AD.    Giúp mik câu c) và d) với! (các bạn cứ coi như câu a) và b) đã có sẵn trg giả thiết đi, vì mk mới giải đc 2 câu đấy thôi.) Thanks
0
14 tháng 5 2022

A B C E F I M

a/ Xét tg vuông ABC có 

BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)

b/ Xét tg vuông AEF và tg vuông AFM có

\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)

Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)

Xét tg MBE và tg MFC có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)

=> tg MBE đồng dạng với tg MFC (g.g.g)

c/ Xét tg vuông ABC và tg vuông AFE có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

=> tg ABC đông dạng với tg AFE

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)

d/

 

a: ΔABC vuông tại A

mà AM là trung tuyến

nên AM=MB=MC

=>góc MBA=góc MAB

b: góc AEF=90 độ-góc EAM=90 độ-góc B

=>gócAEF=góc ACB

c: Xét ΔAFE vuông tại A và ΔABC vuông tại A có

góc AEF=góc ACB

=>ΔAFE đồng dạng với ΔABC

=>AF/AB=AE/AC

=>AF*AC=AB*AE

a: Xét tứ giác ADHE co

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: IO//AC

AC vuông góc HE

=>IO vuông góc HE

mà ΔOEH cân tại O

nên góc EOI=góc HOI

Xét ΔEOI và ΔHOI có

OE=OH

góc EOI=góc HOI

OI chung

Do đó: ΔEOI=ΔHOI

=>góc EIO=góc HIO

=>IO là phân giác của góc EIH