K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2023

`a)`

+, `Delta ABC` vuông tại `A(GT)=>hat(A)=90^0`

`DE⊥BC(GT)=>hat(BED)=90^0`

`BD` là p/g của `hat(ABC)(GT)=>hat(B_1)=hat(B_2)`

Xét `Delta ABD` và `Delta EBD` có :

`{:(hat(A)=hat(BED)(=90^0)),(BD-chung),(hat(B_1)=hat(B_2)(cmt)):}}`

`=>Delta ABD=Delta EBD(c.h-g.n)(đpcm)`

+, Có `Delta ABD=Delta EBD(cmt)`

`=>BA=BE` ( 2 cạnh t/ứng ) `(đpcm)`

`b)` 

Có `BA=BE(cmt)`

`=>Delta ABE` cân tại `B`

mà `hat(ABE)=60^0(hat(ABC)=60^0)`

nên `Delta ABC` đều `(đpcm)`

`c)`

Có `Delta ABC` vuông tại `A=>hat(ABC)+hat(C)=90^0`

hay `60^0+hat(C)=90^0`

`=>hat(C)=90^0-60^0=30^0` (1)

`Delta ABE` đều `(cmt)=>hat(A_1)=60^0`

`=>hat(A_2)=30^0` (2)

Từ `(1)` và `(2)=>Delta EAC` cân tại `E`

`=>AE=EC` 

Có `Delta ABE` đều `(cmt)=>AB=AE` 

mà `AE=EC(cmt)`

`{:(nên EC=AB),(mà AB=EB(cmt);AB=5cm):}}`

`=>EC=EB=5cm`

Vậy `BC=EC+EB=5+5=10(cm)`

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE

b: BA=BE và góc ABE=60 độ

=>ΔBAE đều

c: Xét ΔABC vuông tại A có cos B=AB/BC

=>5/BC=1/2

=>CB=10cm

21 tháng 3 2019

a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD 

Suy ra góc ABD = góc EBD 

Vậy tam giác ABD = tam giác EBD 

b) Ta có: AB=EB ( tam giác ABD = tam giác EBD ) 

Suy ra tam giác ABE cân tại B 

Tam giác ABE cân tại B có góc EBA =60 độ 

Suy ra tam giác ABE là tam giác đều 

c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ 

Suy ra ACB = 30 độ 

Suy ra tam giác ABC là nửa tam giác đều  

Suy ra AB = 1/2 BC 

Suy ra BC = 2AB = 2 . 5 = 10 cm

-Tham khảo-

21 tháng 3 2019

a,  Xét tam giác ABD và tam giác EBD có :

BD chung

góc ABD = góc EBD ( vì BD là phân giác của ABC)

=> tam giác ABD=tam giác EBD ( cạnh huyền-góc nhọn)

b, Vì tam giác ABD= tam giác EBD (  câu a)

=> AB=EB

Xét tam giác ABE có :

AB=EB

=> Tam giác ABE cân tại B

Xét tam giác ABE cân tại B có :

ABE =60 độ( vì góc ABC=60 độ)

=> Tan giác ABE đều

c, Xét tam giác ABC vuông tai jS có :

góc ABC =60 độ ( giả thiết), góc BAC= 90 độ( Vì tam giác ABC vuông tại A)

=> góc C = 30 độ

Mà trong tam giác vuông , cạnh đối diện với góc 30 độ bằng nửa cạnh huền

=> 2AB = BC . Mà AB = 5 ( giả thiết)

=> BC =10

Áp dụng định lý PYTAGO vào tam giác ABC vuông tại A có :

 BC^2 = AB^2 + AC^2 . Mà AB = 5 , BC =10

=> 10^2 = 5^2 + AC^2

=> 100=25 + AC^2

=> AC^2 = 75 

=> AC = căn bậc 2 của 75 ( Vì mình ko đánh dấu căn bậc 2 được nên đành phải viết)

8 tháng 6 2020

hình tự kẻ nghen:333

a) Xét tam giác ABD và tam giác EBD có

B1=B2( gt)

BD chung

BAD=BED(=90 độ)

=> tam giác ABD= tam giác EBD( ch-gnh)

b) từ tam giác ABD= tam giác EBD=> AB=EB( hai cạnh tương ứng)

=> tam giác ABE cân B mà ABC= 60 độ=> ABE đều

c) vì ABE đều=> BAE= 60 độ, AB=EB=AE

ta có BAC= BAE+EAC=90 độ

=> EAC=90-60=30 độ

vì tam giác ABC vuông tại A và có ABC=60 độ

=> ACB= 30 độ

=> ACB=EAC=> tam giác EAC cân E=> AE=EC=> AE=EC=EB=AB

ta có BC= BE+EC=> BC= 5cm+5cm=10cm

10 tháng 2 2020

Vẽ hình rồi mình làm cho!!:u

(mình ngại vẽ):,<

11 tháng 4 2020

Câu hỏi của đoàn kiều oanh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

4 tháng 2 2016

Hình bạn tự vẽ nhá!

a/ Xét tam giác ABD và tam giác EBD có:

Góc A= góc BED=90độ

BD: chung

Góc ABD=góc EBD(phân giác BD)

=> tam giác ABD=tam giác EBD(ch-gn)

b/ Theo mk nghĩ ko phải tam giác đều mà là tam giác cân vì 

BE=BA(cạnh tương ứng của tam giác ABD=tam giác EBD)

=> Tam giác ABE là tam giác cân và cân tại B

c/ Thiếu đề

tik nha bà con

4 tháng 2 2016

minh moi hok lop 6 thoi ban a

7 tháng 4 2017

Ở lớp nói chỉ làm phần c thôi hả

c) Tam giác ABC vuông tại B

=>ABC+ACB=90 độ,

=>60 độ +ACB=90 độ

=>ACB=30 độ

Trong tam giác vuông, cạnh đối diện với góc 30 độ = 1/2 cạnh huyển

=>AB=1/2BC

=>5=1/2BC

=>BC=10

Vậy BC=10 cm

7 tháng 4 2017

tam giác:

abd = ebd 

tam giác 

abe đều

tính :

độ dài bc

9 tháng 3 2018

(Bạn tự vẽ hình giùm)

1/ \(\Delta ABD\)vuông và \(\Delta EBD\)vuông có: \(\widehat{ABD}=\widehat{EBD}\)(AD là tia phân giác góc A)

Cạnh huyền BD chung

=> \(\Delta ABD\)vuông = \(\Delta EBD\)vuông (cạnh huyền - góc nhọn) (đpcm)

2/ Ta có \(\Delta ABD\)\(\Delta EBD\)(cm câu 1) => AB = EB (hai cạnh tương ứng) => \(\Delta AEB\)cân tại B

và \(\widehat{B}=60^o\)=> \(\Delta AEB\)đều (đpcm)