Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, B] Đoạn thẳng n: Đoạn thẳng [A, H] Đoạn thẳng g_1: Đoạn thẳng [B, E] Đoạn thẳng i_1: Đoạn thẳng [A, F] Đoạn thẳng j_1: Đoạn thẳng [D, F] Đoạn thẳng k_1: Đoạn thẳng [A, G] A = (-0.43, -5.14) A = (-0.43, -5.14) A = (-0.43, -5.14) C = (21, -5.05) C = (21, -5.05) C = (21, -5.05) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm H: Giao điểm của k, i Điểm H: Giao điểm của k, i Điểm H: Giao điểm của k, i Điểm D: Giao điểm của c, i Điểm D: Giao điểm của c, i Điểm D: Giao điểm của c, i Điểm F: Giao điểm của b, f_1 Điểm F: Giao điểm của b, f_1 Điểm F: Giao điểm của b, f_1 Điểm E: Giao điểm của b, f Điểm E: Giao điểm của b, f Điểm E: Giao điểm của b, f Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm G: Giao điểm của h_1, i Điểm G: Giao điểm của h_1, i Điểm G: Giao điểm của h_1, i
Cô hướng dẫn nhé
a) \(\Delta DEC\sim\Delta AEF\left(g-g\right)\)
b) Từ định lý Pi-ta-go ta tìm được BC = 5 cm.
\(\Delta ABH\sim\Delta CBA\left(g-g\right)\Rightarrow\frac{AB}{BC}=\frac{AH}{AC}=\frac{BH}{BA}\Rightarrow\frac{3}{5}=\frac{AH}{4}=\frac{BH}{3}\)
Vậy thì AH = 2,4 cm, BH = 1,8 cm. Khi đó BD - BH + HD = BH + AH = 2,4 + 1,8 = 4,2 cm.
\(S_{ABD}=\frac{1}{2}.AH.BD=\frac{1}{2}.2,4.4,2=5.04\left(cm^2\right)\)
c) Ta cm được AG là phân giác, từ đó suy ra \(\frac{GB}{GC}=\frac{AB}{AC}\) (TC tia phân giác)
Mà \(\frac{AB}{AC}=\frac{AH}{HC}=\frac{HD}{HC}\) (TC tam giác đồng dạng)
Vậy \(\frac{GB}{GC}=\frac{HD}{HC}\)
bạn tự vẽ hinh nha
1)
Xét tam giác ABC có
hai đường cao BE và CD cắt nhau tại H nên H là trực tâm
do đó \(AH\perp BC\)
mà \(HM\perp BC\)
suy ra AH trùng với HM
vậy A; H; M thẳng hàng
b)
dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)
dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)
2)
a)
Xét tam giác ABC và tam giác DEC
có \(\widehat{BAC}=\widehat{CDE}\)
\(\widehat{ACB}\)chung
nên tam giác ABC đồng dạng với tam giác DEC
\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)
b)
Xét tam giác ABC
có AD là đường phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)
Từ (1) và (2) suy ra
\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)
a, Ta có: ^A + ^B + ^C = 180 ( tổng ba góc trong 1 tam giác)
mà theo gt ^A=90, ^C=30 => ^B = 60
Lại có tam giác ABD cân tại B ( BD=BA theo gt) và ^B = 60 ( theo trên)
=> tam giác ABD đều ( e tự giải thik)
vì tam giác ABD đều => ^BAD=60 => ^DAC=90-60=30
b, vì ^DAC = ^ DCA (=30)
=> tam giác DAC cân tại D(*)
=> AD=DC (1)
vì tam giác ADC cân tại D mà DE là cao ứn vs cạnh AC => DE đồng thời là đường trung tuyến ứng vs cạnh AC => AE = EC(2)
Xét tam giác ADE và tam giác CDE có:
AD=DC( theo 1)
AE=EC (theo 2)
DE chung
=> tam giác ADE= tam giác CDE (c.c.c)
c, vì tam giác ABD đều => AB=BD=AD=5cm
mà tam giác ADC cân tại D ( theo *)=> AD=DC=5cm
=> BC= BD + DC= 5+5=10cm
áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:
BC2=AB2+AC2
=> AC2= BC2-AB2
hay AC2= 102-52=75
=> AC \(\sqrt{75}\)\(\approx\)8.66
d, TỰ LÀM
ko co hinh a