Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có
\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))
Do đó: ΔABD\(\sim\)ΔEBC(g-g)
Trả lời :
a, Xét \(\Delta ABC\)có :
AB2 + AC2 = 62 + 82 = 36 + 64 = 100
BC2 = 102 = 100
=> AB2 + AC2 = BC2
=> \(\Delta ABC\)vuông tại A.
Iem học ngu hình nên chỉ làm được câu a, có gì thứ lỗi -_-
a, bn dựa vào định lý Ta- lét đảo để cm nha
b, Xét \(\Delta DEC\) và \(\Delta ABC\) có
\(\widehat{EDC}=\widehat{BAC}=90^o\)
\(\widehat{BCA}\): chung
=> \(\Delta EDC\) đồng dạng vs \(\Delta ABC\left(g.g\right)\)
c, Xét tam giác ABC có AD là tia tia giác góc BAC ta đc:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
Mà BC + CD = BC
=> BC + CD = 10
=> BD = 10 : (3+4) x 3 = 30/7 (cm)
\(S_{ABC}=\frac{6\cdot8}{2}=24\left(cm^2\right)\)