K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

a. Xét tam giác ABC và tam giác ADE 

AB=AD

BAC=DAE=90*

AC=AE

=>  tam giác ABC= tam giác ADE(cgc)

=> BC=DE

b. Gọi giao điểm giữa ED và BC là H

Theo câu a,  tam giác ABC= tam giác ADE(cgc) => ACB=AED

Xét tam giác ADE có ADE+AED+DAE=180*

Xét tam giác HDC có

HDC+HCD+DHC=180*

Mà ADE=HDC; AED=HCD

=> DAE=DHC=90*

=> DE vg BC

c. Gọi số đo góc B, C lần lượt là b,c

Do tam giác ABC vuông tại A=> B+C=90* => b+c=90*

Theo bài ra ta có: 4b=5c=> \(\frac{b}{5}=\frac{c}{4}=\frac{b+c}{5+4}=\frac{90}{9}=10\)

=> b=10.5=50*

=> ABC=50* => ADE=50*

27 tháng 11 2017

ko có hình hả bạn

23 tháng 11 2017

A B C E D

Xét t/g ABC và t/g ADE có:

góc BAC = góc EAD = 90 độ

AB = AD (gt)

AC = AE (gt)

Do đó t/g ABC = t/g ADE (2 cạnh góc vuông)

=> BC = DE

b,Gọi I là giao điểm của BC và ED

Xét ∆AED và ∆ABC có:

+AB=AD(gt)

+\(\widehat{BAC}=\widehat{DAB}\left(=90^o\right)\)

+AC=AE(gt)

\(\Rightarrow\)∆AED=∆ABC(ch-cgv)

\(\Rightarrow\widehat{EDA}=\widehat{ABC}\) (2 góc tương ứng)

Mà \(\widehat{DEA}+\widehat{EDA}=90^o\)( do ∆ADE vuông tại A)

\(\Rightarrow\widehat{CBA}+\widehat{DEA}=90^o\)

\(\Rightarrow\)∆BIE vuông tại I

\(\Rightarrow DE\perp BC\)

15 tháng 10 2016

a) Xét \(\Delta\) ADE và \(\Delta\)ABC có:
        AD = AB (giả thuyết)

       \(\widehat{A_1}=\widehat{A_2}=90^0\) 

      AE = AC (giả thuyết)
Do đó \(\Delta ADE=\Delta ABC\) (c.g.c)
=> DE = BC (2 cạnh tương ứng)
b) Ta có: \(\widehat{D_1}=\widehat{D_2}\) (2 góc đối đỉnh)

                \(\widehat{C}=\widehat{E}\) (\(\Delta ADE=\Delta ABC\))
=> \(\widehat{N}=\widehat{A}=90^0\) 
Hay DE vuông góc với BC
 

          

1 tháng 12 2016

A B C D E N

 

\(a.\)

Xét \(\Delta ADE\)\(\Delta ABC\) có :

\(AD=AB\) \(\left(gt\right)\)

\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)

\(AE=AC\) \(\left(gt\right)\)

Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)

\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )

\(b.\)

Ta có :

\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )

\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )

\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)

Hay \(DE\perp BC\)

Vậy \(DE\perp BC\)