Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AHC và tam giác AHC có: AH chung
AB = AC do tam giác ABC cân tại A (gt)
góc AHB = góc AHC = 90
=> tam giác AHC = tam giác AHC (ch-cgv)
b, tam giác AHC = tam giác AHC (câu a)
=> CH = BH (đn)
xét tma giác BHN và tam giác CHM có: góc MHC = góc NHB (đối đỉnh)
HN = HM (gt)
=> tam giác BHN = tam giác CHM (c-g-c)
=> góc BNH = góc HMC (đn) mà 2 góc này slt
=> BN // AC (đl)
a, Xét △HAC vuông tại H có: CH2 + AH2 = AC2 (định lý Pytago)
=> (9,6)2 + (7,2)2 = AC2 => 92,16 + 51,84 = AC2 => AC2 = 144 => AC = 12 (cm)
b, Ta có: \(S_{\text{△}ABC}=\frac{AC.AB}{2}\)
Và \(S_{\text{△}ABC}=\frac{AH.BC}{2}\)
\(\Rightarrow\frac{AC.AB}{2}=\frac{AH.BC}{2}\)( = S△ABC)
=> AC . AB = AH . BC (đpcm)