K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có DB/AB = DC/AC =>3/AB=4/AC => 4AB=3AC => AB=3/4 AC 
ta lại có BC=3+4=7 cm 
tam giác ABC vuông tại A, theo định lí pitago, ta có BC^2 = AB^2 + AC^2

=> 49= 9/16AC^2 + AC^2 => AC=28/5 => AB=21/5

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

a: BC=13cm

\(AB=3\sqrt{13}\left(cm\right)\)

\(AC=2\sqrt{13}\left(cm\right)\)

11 tháng 10 2023

\(BC=\sqrt{3^2+4^2}=5\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{12}{5}cm\)

\(AD=\sqrt{bc\left(1-\left(1-\dfrac{a}{b+C}\right)^2\right)}=\dfrac{4\sqrt{3}}{7}\)

11 tháng 10 2023

Bạn giải kỹ giúp mình dc ko ạ

 

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}=\dfrac{4}{5}\)

hay \(AB=\dfrac{4}{5}BC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2\cdot\dfrac{9}{25}=9^2=81\)

\(\Leftrightarrow BC^2=225\)

hay BC=15cm

\(\Leftrightarrow AB=\dfrac{4}{5}BC=12\left(cm\right)\)

19 tháng 8 2021

Ta có:     \(AC=AD+DC\)

         ⇔  \(AC=4+5\)

         ⇔  \(AC=9\) ( cm )

Áp dụng hệ thức lượng giác vào △ ABC, ta có: 

\(AB^2=AD.AC\)  ⇔  \(AB^2=4.9=36\)   ⇔   \(AB=6\)  ( cm )

Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:

       \(BC^2=AB^2+AC^2\)

⇔   \(BC^2=6^2+9^2\)

⇔   \(BC^2=117\)

⇒     \(BC=\sqrt{117}=3\sqrt{13}\)

a: \(AC=\sqrt{12^2+14^2}=2\sqrt{85}\left(cm\right)\)

\(BH=\dfrac{BA\cdot BC}{AC}=\dfrac{12\cdot14}{2\sqrt{85}}=\dfrac{84\sqrt{85}}{85}\left(cm\right)\)

b: Xét ΔABC có BD là đường phân giác

nên AD/AB=CD/BC

=>AD/12=CD/14

=>AD/6=CD/7

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{2\sqrt{85}}{13}\)

Do đó: \(AD=\dfrac{12\sqrt{85}}{13}\left(cm\right);CD=\dfrac{14\sqrt{85}}{13}\left(cm\right)\)

7 tháng 4 2020

b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7

7 tháng 4 2020

a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC

=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)

b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm

c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm