K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hi m.n Sau đây là đè thi HK2 trường tớ :))Câu 1 :A = ( 2.x^2.y^3 ) . ( -3.x^3.y^4 )a) Thu gọn đợn thức A b) Xác định hệ số và bậc của đơn thức A sau khi đã thu gọnCâu 2: Cho đa thức P(x) = 3.x^2 + 4x - 3.x^2 - x +5a) Thu gọn và sắp xếp các hạng tử của P(x) theo lũy thừa giảm dần của biến.b) Tính P(1) và P(1/5)c) Tìm nghiệm của đa thức P(x)Câu 3 :Cho 2 đa thức f(x) = 4.x^3+7x^2 + 3.x + 1/2 và g(x) = -4x^3 + 7x^2...
Đọc tiếp

Hi m.n Sau đây là đè thi HK2 trường tớ :))
Câu 1 :
A = ( 2.x^2.y^3 ) . ( -3.x^3.y^4 )
a) Thu gọn đợn thức A 
b) Xác định hệ số và bậc của đơn thức A sau khi đã thu gọn

Câu 2: 
Cho đa thức P(x) = 3.x^2 + 4x - 3.x^2 - x +5
a) Thu gọn và sắp xếp các hạng tử của P(x) theo lũy thừa giảm dần của biến.
b) Tính P(1) và P(1/5)
c) Tìm nghiệm của đa thức P(x)

Câu 3 :
Cho 2 đa thức f(x) = 4.x^3+7x^2 + 3.x + 1/2 và g(x) = -4x^3 + 7x^2 - 3x - 5/6
a) Tính f(x) + g(x)
b) Tính f(x) - f(x)
Câu 4 :
Cho tam giác ABC vuông tại A. Vẽ BD là tia phân giác của góc ABC ( d thuộc AC) kẻ đường thẳng DE vuuong góc với BC (e thuộc BC )
a) Chứng minh Tam giác ABD = tam giác EBD
b ) Đường thẳng DE cắt AB tại F . Chứng minh DF > DE

c) Chứng minh đường thẳng BD là đường trung trực của đoạn thẳng FC
 Câu 5 :  cho f(x) = a.x^3 + b.x^2 + c.x + d trong đó a,b,c,d thuộc Z và thỏa mãn b = 3a + c
Chứng minh rằng: tích của f(1) và f(-2) là bình phương của 1 số nguyên.
---------------------> Hết <--------------------

0
6 tháng 4 2018

ta có : BC2 = 102 = 100

          AC2 +AB2 =62 + 82 =36 +64 = 100

       BC2 =AC2 + AB2

suy ra tam giác ABC vuông tại A ( định lý pytago đảo )

5 tháng 5 2019

a, AB = 6 => AB^2 = 6^2 = 36

AC = 8 => AC^2 = 8^2 = 64

=> AB^2 + AC^2 = 36 + 64 = 100

BC = 10 => BC^2 = 10^2 = 100

=> BC^2 = AB^2 + AC^2 

=> tam giác ABC vuông tại A (định lí PTG đảo)

5 tháng 5 2019

a, xét tam giác ABD và tam giác EBD có : BD chung

góc ABD = góc EBD do BD là phân giác

góc DAB = góc DEB = 90 do ...

=> tam giác ABD = tam giác EBD (ch - gn)

=> AD = ED (đn)

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:a, - 120x5y4 b, 60x6y2 c, -5x15y3Bài 2: Điền đơn thức thích hợp vào chỗ trống:a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5Bài 3: Thu gọn các đơn thức sau:a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2Bài 4: Cho tam giác ABC vuông tại A (AC>AB)....
Đọc tiếp

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:
a, - 120x5y4 b, 60x6y2 c, -5x15y3
Bài 2: Điền đơn thức thích hợp vào chỗ trống:
a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5
Bài 3: Thu gọn các đơn thức sau:
a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2
d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2
Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I là trung điểm của BC. Vẽ đường trung trực của cạnh BC cấtC tại D. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi F là giao điểm của BE và đường thẳng AI. Chứng minh :
a, CD = BE; b, Góc BEC = 2. góc BEC
c, Tam giác AEF cân d, AC=BF
Bài 5: Cho tam giác ABC có góc A bằng 90o và BD là đường phân giác. Trên BC lấy điểm E sao cho BE = BA
a, Chứng minh AD = DE và BD là đường trung trực của đoạn thẳng AE
b, Kẻ AH vuông góc với BC. Chứng minh: AE là tia phân giác của góc HAC
c, Chứng minh AD<CD
d, Gọi tia Cx là tia đối của tia CB. Tia phân giác của góc Acx cắt đường thẳng BD tại K. Tính số đo góc BAK
Bài 6: Cho tam giác abc cân tại a, đường phân giác của góc b cắt ac tại M.
Kẻ me vuông góc với bc ( e thuộc bc). đường thẳng em cắt ba tại I
a, chứng minh tam giác abm = tam giác ebm
b, chứng minh bm là đường trung trực của ae
c, so sánh am và mc
d, chứng minh tam giác BCI cân

0
2 tháng 5 2018

a) Xét \(\Delta ABD\)và \(\Delta EBD\)có :

BD ( cạnh chung )

\(\widehat{ABD}=\widehat{EBD}\)( gt )

Suy ra : \(\Delta ABD\)\(\Delta EBD\)( cạnh huyền - góc nhọn )

\(\Rightarrow\)AB = BE 

\(\Rightarrow\)\(\Delta ABE\)cân tại B mà \(\widehat{ABE}=60^o\)nên \(\Delta ABE\)đều

c) vì \(\widehat{ABC}+\widehat{ACB}=90^o\)\(\Rightarrow\widehat{ACB}=90^o-60^o=30^o\)

Mà \(\widehat{ABD}=\widehat{DBE}=30^o\)

\(\Rightarrow\)\(\Delta DBC\)cân tại D có DE là đường cao nên cũng là trung tuyến

\(\Rightarrow\)E là trung điểm của BC

d) \(\Delta ABE\)đều có AH là đường cao nên cũng là đường trung trực 

\(\Rightarrow\)BF = EF

\(\Rightarrow\)\(\Delta BFE\)cân tại F

\(\Rightarrow\)\(\widehat{FBE}=\widehat{FEB}\)

Mà \(\widehat{FBE}=\widehat{ACB}\)

\(\Rightarrow\)\(\widehat{ACB}=\widehat{FEB}\)

Mà 2 góc này ở vị trị đồng vị nên EF // AC

2 tháng 5 2018

A B C E D F