K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

a) Xét 2 tam giác cs:

BM=MC

góc BMD=AMC

MD=MA

=> = nhau( c.g.c)

21 tháng 7 2019

b) từ a=> góc DBM=MCA

Mà 2 góc này ở vị trí slt

=> BD//AC

=> góc DBA+BAC=180(TCP)

=> ABD=180-90=90 độ

10 tháng 2 2021

A B C M D

a , Xét \(\Delta AMC\)và \(\Delta DMB\)có :

BM = MC ( M là trung điểm của BC )

AM = MD ( giả thiết )

\(\widehat{AMC}=\widehat{BMD}\)( đối đỉnh )

=> \(\Delta AMC\)\(\Delta DMB\) ( c.g.c )

=> BM = MA ( 2 cạnh tương ứng ) ; \(\widehat{MCA}=\widehat{MDB}\) ( 2 góc tương ứng )

b , Vì \(\widehat{MCA}=\widehat{MDB}\)= > \(\widehat{ADB}=\widehat{BCA}\)

Vì BM = MA => \(\Delta AMB\)cân tại M .

=> \(\widehat{MAB}=\widehat{MBA}\)

Ta có : \(\widehat{ABC}+\widehat{ACB}=90^0\)\(\Delta ABC\perp A\))

hay \(\widehat{ABM}+\widehat{ACM}=90^0\)

vì \(\widehat{MCA}=\widehat{MDB}\)\(\widehat{MAB}=\widehat{MBA}\)

=> \(\widehat{BAM}+\widehat{BDM}=90^0\)

=> \(\widehat{BAD}=90^0\)

c , Vì AM = BM

mà BM = \(\frac{1}{2}BC\)

=> AM = \(\frac{1}{2}BC\)

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: AC=BD

b: Ta có: ABDC là hình chữ nhật

nên \(\widehat{ABD}=90^0\)

c: ta có:ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=BC/2

30 tháng 4 2019

A B C M D

a. Xét ΔAMC và ΔBMD, ta có:

BM = MC (gt)

∠(AMB) = ∠(BMC) (đối đỉnh)

AM = MD (gt)

Suy ra: ΔAMC = ΔDMB (c.g.c)

⇒ ∠(MAC) = ∠D (2 góc tương ứng)

Suy ra: AC // BD

(vì có 2 góc ở vị trí so le trong bằng nhau)

Mà AB ⊥ AC (gt) nên AB ⊥ BD.

Vậy (ABD) = 90o.

b. Xét ΔABC và ΔBAD ta có:

AB cạnh chung

∠(BAC) = ∠(ABD) = 90o

AC = BD (vì ΔAMC = ΔDMB)

Suy ra: ΔABC = ΔBAD (c.g.c)

c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)

Mặt khác: AM = 1/2 AD

Vậy AM = 1/2 BC.

30 tháng 4 2019

qua essy

2 tháng 8 2015

a) tam giác MAC = tam giác BAD theo trường hợp cạnh góc cạnh

Có: MC = MB (AM trung tuyến)

AMC = DMB (2 góc đối đỉnh)

MA = MD (theo giả thiết)

=> 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh

b) 

Tam giác ABC có góc A=90 độ

Suy ra: góc ACB+ góc CBA= 90 độ

Mà : góc ACB (hay góc ACM) = DBM (2 tam giác bằng nhau, chứng minh trên)

Suy ra: góc DBM + CBA = 90 độ

Hay DBA=90 độ

24 tháng 3 2021

thiếu mũ góc

 

20 tháng 1 2016
tyttyhhdfhdh
hhfh
hddfg