Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E B A C M D O
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
Xét tam giác ABC có
AB = AC ( = 5 cm )
=> tam giác ABC cân tại A ( ĐN)
Ta có AM là trung tuyến (gt)
=> AM là đg cao (t/c tam giác cân)
=> AM vuông BC (ĐN)
Ta có M là trung điểm của BC(AM là trung tuyến)
=> BM=CM=1/2 BC=6/2=3cm
Xét tam giác ABM có
AM vuông BC (cmt)
=> tam giác ABM vuông tại M (ĐN)
=> AM2 +BM2 = AB2 (đ/l Pitago)
Thay số: AM2 + 3 = 5
=> AM2= 5-3
=> AM2= 2
=> AM = \(\sqrt{2}\)(cm)
b) tam giác \(ABM\ne DCM\)
c) tam giác ACD ko cân
tu ve hinh :
a, xet tamgiac MBA va tamgiac MDC co :
goc BMA = goc DMC (doi dinh)
BM = CM do M la trung diem cua BC (GT)
MA = MD (GT)
=> tamgiac MBA = tamgiac MDC (c - g - c)
=> AB = DC (dn)
tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt
=> AB // CD (dh)
b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)
=> AC | DC (dl) => tamgiac ACD vuong tai C (dn)
tamgiac MBA = tamgiac MDC => AB = CD (dn)
goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C
xet tamgiac ACB va tamgiac CAD co AC chung
=> tamgiac ACB = tamgiac CAD (2cgv)
=> BC = AD (dn)
M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)
=> AM = BC/2
\(a)\)
Vì \(AM\)là đường trung tuyến
\(\rightarrow BM=CM\)
Xét \(\Delta AMB\)và \(\Delta DMC\)ta có:
\(\hept{\begin{cases}BM=CM\left(cmt\right)\\MD=MA\left(GT\right)\\\widehat{BMA}=\widehat{DMC}\end{cases}}\)
\(\rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
\(b)\)
Vì \(\Delta AMB=\Delta DMC\left(cmt\right)\)
\(\rightarrow\hept{\begin{cases}\widehat{ABM}=\widehat{MCD}\\AB=CD\end{cases}}\)
Mà hai góc này ở vị trí so le trong
\(\rightarrow AB//CD\)
Mà \(AB\perp AC\)( vì \(\Delta ABC\)vuông tại \(A\))
\(\rightarrow CD\perp AC\)
Xét \(\Delta ABC\)và \(DCM\)ta có:
\(\hept{\begin{cases}AB=CD\left(cmt\right)\left(cmt\right)\\ACchung\\\widehat{BAC}=\widehat{DCA}=90^o\end{cases}}\)
\(\rightarrow\Delta ABC=\Delta DMC\left(c.g.c\right)\)
\(c)\)
Ta có: \(AB=DC=6cm\)
Xét \(\Delta DCA\)vuông tại \(C\)ta có:
\(DC^2+AC^2=AD^2\)
\(\rightarrow AD^2=6^2+8^2\)
\(\rightarrow AD^2=10^2\)
\(\rightarrow AD=10cm\)
Mà \(MD=MA\)
\(\rightarrow M\)là trung điểm của \(AD\)
\(\rightarrow AM=\frac{1}{2}AD=\frac{1}{2}.10=5cm\)
\(d)\)
Giả sử: \(AM< \frac{AB+AC}{2}\)
Ta có: \(\frac{AB+AC}{2}=\frac{6+8}{2}=\frac{14}{2}=7cm\)
Mà \(AM=5cm\)
\(\rightarrow5cm< 7cm\)
\(\rightarrow AM< \frac{AB+AC}{2}\)
M C A B D
A B C M D
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.