Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ M kẻ \(MH\perp AC\) (H thuộc AC) ta có
\(MH\perp AC\)
\(AB\perp AC\)
=> MH//AB (cùng vuông góc với AC) (1)
BM=CM (2)
=> AH=CH (trong tam giác đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)
Trong ta giác AMC có
\(MH\perp AC;AH=HC\) => tam giác AMC cân tại M (ta giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
=> AM=CM mà CM=BM => AM=BM=CM \(\Rightarrow AM=\frac{1}{2}BC\)
a) Xét ΔABM và ΔDCM có:
BM=MC(gt)
\(\widehat{BMA}=\widehat{CMD}\)(đđ)
AM=DM
=> ΔABM=ΔDCM(c.g.c)
=>\(\widehat{ABM}=\widehat{MCD}\) .Mà 2 góc này ở vị trí soletrong)
=>AB//CD
b)Vì ΔABC vuông tại A(gt)
=> AM=BM=MC
Có: AD=AM+MD
BC=MB+MC
Mà: AM=BM(cmt); MD=MC(cmt)
=>BC=AM
Vì ΔABM=ΔDCM(cmt)
=>AB=DC
Xét ΔABC và ΔCDA có:
AB=DC(cmt)
AC: cạnh chung
BC=AD(cmt)
=>ΔABC=ΔCDM(c.c.c)
c) Vì ΔABC vuông tại A(gt)
=>AM=BC/2
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
a/ Xét tam giác AMC và tam giác BMD : AM = MD (gt) ;\(\widehat{AMC}\)= \(\widehat{DMB}\) (đối đỉnh) ; BM = BC (vì là tđ BC)
\(\Rightarrow\) Tam giác AMC = tam gaics DMB (c-g-c)
b/ Ta có : \(\widehat{MBD}\)= \(\widehat{MCA}\)(câu a/) và \(\widehat{ABC}\)+ \(\widehat{ABC}\)\(=\) 90 độ (do tam giác ABC vuông)\(\Rightarrow\) \(\widehat{ABC}\)+ \(\widehat{MBD}\)
\(=\)90 độ hay \(\widehat{ABD}\)\(=\)90 độ
c/Vì AM là đường trung tuyến của BC trong tam giác vuông ABC(gt) \(\Rightarrow\)AM \(=\)1/2BC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông gócBC
(Bạn tự vẽ hình)
Trong tam giác vuông đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền
=> đpcm