Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DI=DH chứng tỏ rằng là D nằm trên tia phân giác góc BAC , tức lad AD là tia phân giác góc BAC
x D C A B E F
trên tia AC lấy điểm F sao cho À = AD
Nối D với C ; D với F
\(\Rightarrow\Delta ADF\)vuông cân tại A
\(\Rightarrow\widehat{ADF}=\widehat{AFD}=45^o\)
Mà \(\widehat{AFD}+\widehat{DFC}=180^o\)( 2 góc kề bù )
hay \(\widehat{DFC}=180^o-45^o=135^o\)
Xét \(\Delta ADC\)vuông tại A có :
\(\widehat{ADC}+\widehat{ACD}=90^o\)( 1 )
vì \(\widehat{ADC}+\widehat{CDE}+\widehat{EDB}=180^o\)
hay \(\widehat{ADC}+90^o+\widehat{EDB}=180^o\)
\(\Rightarrow\widehat{ADC}+\widehat{EDB}=90^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{ACD}=\widehat{EDB}\)
vì \(\Delta ABC\)vuông cân \(\Rightarrow AB=AC\)mà AB = AF
\(\Rightarrow BD=FC\)
Xét \(\Delta BDE\)và \(\Delta CFO\)có :
\(\widehat{ACD}=\widehat{EDB}\)( cmt )
BD = FC ( cmt )
\(\widehat{DFC}=\widehat{DBE}\)( = 135 độ )
Suy ra : \(\Delta BDE\)= \(\Delta CFO\)( g.c.g )
\(\Rightarrow\)DC = DE ( 2 cạnh tương ứng )
mà \(\widehat{CDE}\)= \(90^o\)
Suy ra : \(\Delta DEC\)là tam giác vuông cân