Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a) bn có thể vào câu hỏi tương tự xem, cái này làm vui thôi
Ta có: \(BN=\frac{BH^2}{AB};CM=\frac{CH^2}{AC};AB.AC=AH.BC;BH.CH=AH^2\)
\(\sqrt[3]{BC^2}=\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\)
\(\Leftrightarrow\)\(BC^2=BN^2+CM^2+3\sqrt[3]{\left(BN.CM\right)^2}\left(\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\right)\)
\(\Leftrightarrow\)\(BC^2=BH^2-NH^2+CH^2-MH^2+3\sqrt[3]{\left(\frac{\left(BH.CH\right)^2}{AB.AB}\right)^2}.\sqrt[3]{BC^2}\)
\(\Leftrightarrow\)\(BC^2=\left(BH^2+CH^2\right)-\left(NH^2+MH^2\right)+3\sqrt[3]{\left(\frac{AH^4}{AH.BC}\right)^2}.\sqrt[3]{BC^2}\)
\(\Leftrightarrow\)\(BC^2=\left(BH+CH\right)^2-2BH.CH-\left(NH^2+MH^2\right)+3\sqrt[3]{\frac{AH^6}{BC^2}}.\sqrt[3]{BC^2}\)
\(\Leftrightarrow\)\(BC^2=BC^2-2AH^2-AH^2+3AH^2\) ( do \(NH^2=AM^2\) )
\(\Leftrightarrow\)\(BC^2=BC^2\) ( luôn đúng )
\(\Rightarrow\)\(\sqrt[3]{BC^2}=\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\) đúng
b) bằng một cách nào đó \(\Delta NBH\) đã đồng dạng với \(\Delta ABC\) ( có góc B chung ) \(\Rightarrow\)\(\frac{BN}{AB}=\frac{BH}{BC}\)
Tương tự: \(\Delta MHC~\Delta ABC\) ( có góc C chung ) \(\Rightarrow\)\(\frac{CM}{AC}=\frac{CH}{BC}\)
\(\Rightarrow\)\(\frac{BN}{AB}+\frac{CM}{AC}=\frac{BH+CH}{BC}=1\)
\(\Leftrightarrow\)\(BN.AC+CM.AB=AB.AB\)
\(\Leftrightarrow\)\(BN\sqrt{AC^2}+CM\sqrt{AB^2}=AB.AC\)
\(\Leftrightarrow\)\(BN\sqrt{CH.BC}+CM\sqrt{BH.BC}=AH.BC\)
\(\Leftrightarrow\)\(BN\sqrt{CH}+CM\sqrt{BH}=AH\sqrt{BC}\) ( chia 2 vế cho \(\sqrt{BC}\ne0\) ) đpcm
a) Tam giác ABH vuông tại H, HE là đường cao
\(\Rightarrow AH^2=AE.AB\)(1)
Tam giác AHC vuông tại H, HF là đường cao
\(\Rightarrow AH^2=AF.AC\)(2)
từ (1) và (2) nên AE.AB=AF.AC(đpcm)
b) Tam giác ABC vuông tại A, AH là đường cao
\(\Rightarrow AB^2=BH.BC\)(3)
Tam giác BIC vuông tại B, BA là đường cao
\(\Rightarrow AB^2=IA.IC\) mà theo (3) thì \(BH.BC=IA.IC\left(\text{đ}pcm\right)\)
c) Tam giác ABC vuông tại A, đường cao AH
\(AH^2=BH.CH\Leftrightarrow AH^2=9.16=144\Leftrightarrow AH=12\)(cm)
BC=9+16=25(cm)
Tam giác ABC vuông tại A, AH là đường cao
\(AB^2=BH.BC=9.25=225\Leftrightarrow AB=15\)
\(AC^2=CH.BC=16.25=400\Leftrightarrow AC=20\)
Tam giác ABC có AD là phân giác
\(\frac{AB}{AC}=\frac{BD}{CD}\Leftrightarrow\frac{15}{20}=\frac{BD}{CD}\Leftrightarrow\frac{15}{BD}=\frac{20}{CD}=\frac{15+20}{BD+CD}=\frac{35}{25}=\frac{7}{5}\)
\(\Leftrightarrow BD=\frac{15.5}{7}=\frac{75}{7}\)\(\Leftrightarrow DH=BD-BH=\frac{75}{7}-9=\frac{12}{7}\)
Áp dụng định lý Py-ta-go vào tam giác vuông AHD:
\(AD^2=DH^2+AH^2=\frac{144}{49}+144=\frac{7200}{49}\Rightarrow AD=\frac{60\sqrt{2}}{7}\)
d) Tam giác ABC vuông tại A, AH là đường cao
\(AB^2=BH.BC\);\(AC^2=CH.BC\)
\(\Rightarrow\frac{AB^2}{AC^2}=\frac{HB.BC}{CH.BC}=\frac{BH}{CH}\left(\text{đ}pcm\right)\)
Còn câu e chờ mình xíu
c) Ta sẽ chứng minh bổ đề sau để dễ dàng tính: Cho \(\Delta\)ABC vuông tại A đường phân giác AD. Chứng minh: \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
C/m: Tự kẻ hình nha .Kẻ DH // AB => DH vuông góc AC. Vì \(\Delta\)ADH vuông tại H có góc DAH=90 nên \(\Delta\)ADH vuông cân tại H
=> \(AD=\sqrt{2}DH\Rightarrow DH=\left(\frac{AD}{\sqrt{2}}\right)\)
Ta có DH // AB => \(\frac{DH}{AB}=\frac{HC}{AC}=\frac{AC-AH}{AC}\) vì (HC=AC-AH)
g) Nhớ lại rằng hai tam giác đồng dạng thì tỉ số diện tích bằng bình phương tỉ số đồng dạng.
Ta có \(\Delta IAB\sim\Delta BAC\to\frac{S\left(IAB\right)}{S\left(ABC\right)}=\left(\frac{AB}{AC}\right)^2.\)
Tương tự \(\Delta BAC\sim\Delta BHA\to\frac{S\left(ABC\right)}{S\left(HBA\right)}=\left(\frac{BC}{BA}\right)^2.\)
Nhân hai đẳng thức với nhau cho ta \(\frac{S\left(IAB\right)}{S\left(ABH\right)}=\left(\frac{BC}{AC}\right)^2=\frac{BC^2}{AC^2}=\frac{BC^2}{BC\cdot CH}=\frac{BC}{CH}\to\frac{S\left(ABH\right)}{S\left(IAB\right)}=\frac{CH}{BC}.\) (ĐỀ SAI NHÉ)
h) Theo định lý Pi-ta-go ta có
\(BC^2=\left(BH+CH\right)^2=BH^2+CH^2+2BH\cdot CH=BE^2+EH^2+HF^2+FC^2+2AH^2\)
\(=BE^2+CF^2+2AH^2+\left(HE^2+HF^2\right)=BE^2+CF^2+2AH^2+EF^2=BE^2+CF^2+3AH^2.\)
1)
a) trong tam giac ABC vuong tai A co
+)BC2=AB2+AC2
suy ra AC=12cm
+)AH.BC=AB.AC
suy ra AH=7,2cm
b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm
suy ra MN=7,2cm
c) goi O la giao diem cu MN va AH
Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm
suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB
Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC
suy ra tam giac AKB can tai K
suy ra goc B= goc BAK
Ta co goc B+ goc BAH=90 do
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)
\(\text{Hình bạn tự vẽ ^_^}\)
\(\text{a)Ta có: }AB^2=HB.BC=1,8.5=9\)
\(\Rightarrow AB=\sqrt{9}=3\left(\text{cm}\right)\)
\(\text{Lại có: }HC=BC-BH=5-1,8=3,2\left(\text{cm}\right)\)
\(\text{và: }AH^2=BH.CH=1,8.3,2=5,76\)
\(\Rightarrow AH=\sqrt{5,76}=2,4\left(\text{cm}\right)\)
\(\text{b) vì M là trung điểm BC nên }BM=CM=\frac{BC}{2}=\frac{5}{2}=2,5\left(\text{cm}\right)\)
\(\text{Ta lại có: }AC^2=CH.BC=3,2.5=16\)
\(\Rightarrow AC=\sqrt{16}=4\left(\text{cm}\right)\)
\(\text{Xét }\Delta DMC\text{ và }\Delta BAC\text{ có:}\)
\(\widehat{DMC}=\widehat{BAC}=90^o\)
\(\widehat{C}\text{ là góc chung}\)
\(\text{ }\Rightarrow\Delta DMC\text{ đồng dạng với }\Delta BAC\)
\(\Rightarrow\frac{DM}{AB}=\frac{DC}{BC}=\frac{CM}{AC}=\frac{2,5}{4}=0,625\left(\text{Tỉ số đồng dạng}\right)\)
\(\text{Vậy }\frac{S_{DMC}}{S_{BAC}}=\left(0,625\right)^2=\frac{25}{64}\)
a, \(AB=\sqrt{BH\cdot BC}=\sqrt{1,8\cdot5}=3\)
\(AH=\sqrt{AB^2-BH^2}=\sqrt{3^2-1,8^2}=2,4\)
b, \(\frac{S_{ABC}}{S_{DMC}}=\frac{MC^2}{BC^2}=\frac{1}{4}\)
c,\(\Delta ABC~\Delta MDC\Rightarrow\frac{BC}{DC}=\frac{AC}{MC}\Rightarrow AC\cdot CD=\frac{1}{2}BC^2\)
d,Cái này bạn tự tính nhá
Mk hơi lười nên làm hơi tắt có j thông cảm mk nha
A B C H 12 20 E
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=400-144=256\Leftrightarrow AC=16\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{144}+\frac{1}{256}=\frac{256+144}{144.256}\)
\(\Rightarrow400AH^2=36864\Leftrightarrow AH^2=\frac{36864}{400}=\frac{2304}{25}\Leftrightarrow AH=\frac{48}{5}\)cm
b, * Áp dụng hệ thức : \(AH^2=AE.AB\)(1)
Áp dụng định lí Pytago cho tam giác AHC vuông tại H
\(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\) (2)
Từ (1) ; (2) suy ra : \(AE.AB=AC^2-HC^2\)( đpcm )