K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2024

xét ΔABD và ΔEBD, có:

BA = BE (giả thiết)

\(\widehat{ABD}=\widehat{EBD}\) (giả thiết)

BD là cạnh chung

⇒ ΔABD = ΔEBD (c-g-c)

b) sao mà DE = BC được

c) vì BA = BE (giả thiết) nên ΔABE cân tại B

Lại có: BK là đường phân giác  ΔABE

⇒ BK cũng là đường trung trực ΔABE

⇒ KA = KE và \(\widehat{BKE}=\widehat{BKA}=90^0\)

xét ΔDEK VÀ  ΔDAK, có:

KA = KE (cmt)

\(\widehat{DKA}=\widehat{DKE}=90^0\left(cmt\right)\)

DK cạnh chung

=> ΔDEK = ΔDAK (c-g-c)

14 tháng 12 2018

a, Vì BD là tia phân giác của góc B suy ra:

góc ABD=góc EBD 

Xét tam giác ABD và tam giác EBD có:

                  BA=BD(gt)

            góc ABD=góc EBD(cmt)

                  BD chung

suy ra: tam giác ABD= tam giác EBD(cgc)

                           Vậy tam giác ABD= tam giác EBD

b,Vì tam giác ABD=tam giác EBD nên

góc BAD=góc BED(2 góc tương ứng)

            mà góc BAD=90độ(tam giác ABC vuông tại A)

suy ra góc BED=90 độ

suy ra:DE vuông góc với BC

Câu c hình như đề bài sai

31 tháng 12 2017

a) Xét tam giác ABD và EBD CÓ

       BD chung, góc abd= góc ebd, BE=BA

do dố tam giác abd= tam giác ebd (c-g-c)

b) vì tam giác ABD= tam giác EBD do đó

    góc A= góc E (2 góc tương ứng)

mà góc A=90 nên góc E=90

=>DE vuông góc BC

c) Xét tam giác ADF và tam giác EDC có

    AD=DE (TAM GIÁC ABD= EBD), GÓC A=GÓC E=90, HAI GÓC D BẰNG NHAU VÌ ĐỐI ĐỈNH

DO ĐÓ TAM GIÁC ADF= TAM GIÁC EDC

=>DF=DC (2 CẠNH TƯƠNG ỨNG )

MÌNH ĐÁNH CAPSLOCK THÔNG CẢM

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE\(\perp\)BC

c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)

Do đó: ΔADK=ΔEDC

Suy ra: AK=EC
Ta có: BA+AK=BK

BE+EC=BC

mà BA=BE

và AK=EC

nên BK=BC

18 tháng 10 2018

giúp mình gấp với, còn c, d, e thôiiii

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên DA=DE

Ta có: ΔABD=ΔEBD

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE⊥BC

5 tháng 1 2022

a: Xét ΔABD và ΔEBD có

BA=BE

ˆABD=ˆEBDABD^=EBD^

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên DA=DE

Ta có: ΔABD=ΔEBD

26 tháng 11 2016

Ta có hình vẽ:

A B C D E H

a) Vì AD là phân giác của ABC nên ABD = DBC

Xét Δ ABD và Δ EBD có:

AB = BE (gt)

ABD = EBD (cmt)

BD là cạnh chung

Do đó, Δ ABD = Δ EBD (c.g.c) (đpcm)

b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)

\(\Rightarrow DE\perp BE\) hay \(DE\perp BC\left(đpcm\right)\)

c) Gọi H là giao điểm của AE và BD

Xét Δ ABH và Δ EBH có:

AB = EB (gt)

ABH = EBH (câu a)

BH là cạnh chung

Do đó, Δ ABH = Δ EBH (c.g.c)

=> AH = EH (2 cạnh tương ứng) (1)

và AHB = EHB (2 góc tương ứng)

Mà AHB + EHB = 180o (kề bù) nên AHB = EHB = 90o

\(\Rightarrow BH\perp AE\) hay \(BD\perp AE\left(2\right)\)

Từ (1) và (2) => BD là đường trung trực của AE (đpcm)

 

26 tháng 11 2016

Ta có hình vẽ:

A D B C E

Gọi BD cắt AE tại M

a/ Xét tam giác ABD và tam giác EBD có:

BD: cạnh chung

BA = BE (GT)

\(\widehat{ABD}\)=\(\widehat{DBE}\) (GT)

=> tam giác ABD = tam giác EBD (c.g.c)

b/ Ta có: tam giác ABD = tam giác EBD (câu a)

=> \(\widehat{A}\)=\(\widehat{E}\)=900 (2 góc tương ứng)

=> DE \(\perp\)BC (đpcm)

c/ Xét tam giác ABM và tam giác EBM có:

BM: cạnh chung

\(\widehat{ABM}\)=\(\widehat{MBE}\)(GT)

\(\widehat{A}\)=\(\widehat{E}\)=900

Trường hợp cạnh huyền góc nhọn

=> tam giác ABM = tam giác EBM (g.c.g)

=> \(\widehat{AMB}\)=\(\widehat{EMB}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{EMB}\)=1800

=> \(\widehat{AMB}\)=\(\widehat{EMB}\)=900

=> BD \(\perp\)AE

Mà BM là phân giác góc B

=> BD là trung trực của AE (đpcm)

23 tháng 12 2016

a) ta có: A + ABC + C =180° (đ/l)

=> 90° + ABC + 40° =180°

=> ABC = 180° -( 40°+ 90°)

=> ABC = 50°

Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°

Vậy ABD = 25°

b) xét tam giác BAD và tam giác BED có:

AB = BE ( GT )

BD chung

ABD = CBD ( GT )

=> tam giác BAD = tam giác BED ( c.g.c )

Ta có A = BED = 90° ( 2 góc t.ư)

=> DE vuông góc BC ( vì có 1 góc= 90° )

c) xét tam giác ABC và tam giác EBF có:

AB = BE ( GT )

B chung

A = E = 90°

=> tam giác ABC = tam giác EBF ( g.c.g )

d) ta có tam giác ABC = tam giác EBF ( theo c )

=> BC = BF ( 2 cạnh tương ứng)

Xét tam giác BKC và tam giác BKF có:

BC = BF ( GT )

BK chung

FBK = KBC ( GT )

=> tam giác BKC = tam giác BKF (c.g.c)

=> BKC = BKF ( 2 góc t.ư)

=> BKC + BKF = 180° ( 2 góc kề bù )

=> BKC = BKF = 180° : 2 = 90° = KFC

Vậy 3 điểm K,F,C thẳng hàng

Bn vẽ hình hộ mk nhé!

 

 

 

 

21 tháng 12 2016

A B C D 40

a) Áp dụng tc tổng 3 góc của 1 tg ta có:

góc BAC + ACB + ABC = 180 độ

=>90 + 40 + ABC = 180

=> ABC = 50 độ

mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )

 

13 tháng 12 2021

undefined