K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

xét\(\Delta ABD\)\(\Delta EBD\)

BD cạnh chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{B}\))

\(\widehat{A}=\widehat{BED}=90^0\)

=>\(\Delta ABD=\Delta EBD\)(ch-gn)

b.vì\(\Delta ABE\)cân tại B (BA=BE(\(\Delta ABD=\Delta EBD\))(1)

mà  BD là đường phân giác xuất phát từ đỉnh B(2)

từ(1) và(2)=>BD đồng thời là đường trung trực ứng với cạnh AE 

3 tháng 5 2018

a) Xét 2 tam giác vuông ABD & EBD có:

BD chung

ABD = EBD 

=>tam ABD = EBD (cạnh huyền - góc nhọn)

b) tam giác ABD = EBD => BA = BE ( 2 cạnh tương ứng )

=> tam  giác ABE cân

Mà trong tam giác cân , đường trung phân giác vừa là đường trung trực => BD trung trực AE

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

c: Xét ΔBFC có

FE,CA là đường cao

FE cắt CA tại D

=>D là trực tâm

=>BD vuông góc FC

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên BA=BE và DA=DE

Ta có: BA=BE

nên B nằm trên đường trung trực của AE\(\left(1\right)\)

Ta có: DA=DE

nên D nằm trên đường trung trực của AE\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

AF=EC

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

hay ΔDFC cân tại D

24 tháng 4 2022

CẢM ƠN

NHA LOVE

26 tháng 3 2022

Hỏi đáp Toán
 a) 

ΔABDΔABD và ΔEBDΔEBD có:
BA = BE (gt)
ˆB1=ˆB2B1^=B2^ (BD là tia phân giác góc B)
BD là cạnh chung
ΔABD=ΔEBD⇒ΔABD=ΔEBD (c.g.c)

 

 ˆBAD=ˆBEDBAD^=BED^ (hai góc tương ứng)
mà ˆBADBAD^ =900=900
ˆBEDBED^ =900=900
 DE  BE

b) ΔABIΔABI và ΔEBIΔEBI có:
BA = BE (gt)

16 tháng 12 2023

a) Ta có:

- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.

- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.

Vậy tam giác ABD = tam giác EBD.

 

b) Ta có:

- Góc ABD = góc EBD (do chứng minh ở câu a).

- Góc ADB = góc EDB (do cùng là góc vuông).

- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).

- Do đó, BD vuông góc với AE.

- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.

 

c) Ta có:

- Tia Cx vuông góc với tia BD tại H.

- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.

- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.

- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).

- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.

16 tháng 12 2023

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED

=>BA=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE

c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF

Ta có: BD\(\perp\)AE

AE//CF

Do đó: BD\(\perp\)CF

mà BD\(\perp\)CH

và CH,CF có điểm chung là C

nên C,H,F thẳng hàng