Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a) xét tứ giác AMEN
góc A =90 *( tấm giác abc vuông tại a
EM vuông góc vs AM nên góc e =90*
en vuông góc vs ac nên góc n bằng 90
suy ra tứ giắc AMEN là hình chữ nhật
b)
vị trí điểm e để tứ giắc AMEN là hình chữ nhật là E là trung điểm cạnh BC
C )
xét tam giác IEK có
AN//EI (AN//EM
N là trung điểm của EK ( E đx vs M qua N
suy ra I đx vs K qua A
Chúc bạn học tốt nhé! ^^
a) ta có : tam giác ABC vuông tại A
=> BAC = 90 độ (1)
có : MD vuông góc AB
=> MDA = 90 độ (2)
Ta có : ME vuông góc AC
=> MEA = 90 độ (3)
Từ (1)(2)(3) => ADME là hình chữ nhật
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
A B C H D E M N I
a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.
b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng
Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)
Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)
Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)
Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)
Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)
Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)
Từ (6) suy ra ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)
Từ (***) và (****) suy ra đpcm.
c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I
\(\Rightarrow\)^IAC = ^ICA (7)
Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)
Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)
Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.
P/s: Không chắc nha!
a: Xét tứ giác AMEN có
góc AME=góc ANE=góc MAN=90 độ
nên AMEN là hình chữ nhật
b: Để AMEN là hình vuông thì AE là phân giác của góc MAN
=>E là chân đường phân giác kẻ từ A xuống BC
c: E đối xứng với I qua AB
nên EI vuông góc với AB tại trung điểm của EI
=>AB là phân giác của góc EAI(1)
E đối xứng với K qua AC
nên EK vuông góc với AC tại trung điểm của EK
=>AC là phân giác của góc EAK(2)
Từ (1), (2) suy ra góc KAI=2*90=180 độ
=>K,A,I thẳng hàng
mà AK=AI
nên A là trung điểm của KI