K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

Ta có: góc BEM=90độ (góc nội tiếp chắn nửa đường tròn) => góc MEC=90độ

Xét tứ giác AMEC có: góc MEC + góc MAC= 90độ + 90độ = 180độ => AMEC nội tiếp

=> góc ACM = góc MEK (cùng chắn cung MA)

Mà HMKE nội tiếp đường tròn đường kính BM => góc KHM = góc MEK (cùng chắn cung MK) 

=> góc ACM = góc KHM

Gọi P là giao điểm của BH và AC

Ta có: CH vuông góc BP (do góc CHB= góc MHB=90độ) , BA vuông góc AC và BA cắt HC tại M => M là trực tâm tam giác BPC

=> PM vuông góc BC

Mà ME vuông góc BC

=> P, M, E thẳng hàng

=> BH, ME, AC đồng qui tại P

26 tháng 6 2018

Ta có: góc BEM=90độ (góc nội tiếp chắn nửa đường tròn) => góc MEC=90độ


Xét tứ giác AMEC có: góc MEC + góc MAC= 90độ + 90độ = 180độ => AMEC nội tiếp

=> góc ACM = góc MEK (cùng chắn cung MA)

Mà HMKE nội tiếp đường tròn đường kính BM => góc KHM = góc MEK (cùng chắn cung MK) 

=> góc ACM = góc KHM

Gọi P là giao điểm của BH và AC

Ta có: CH vuông góc BP (do góc CHB= góc MHB=90độ) , BA vuông góc AC và BA cắt HC tại M => M là trực tâm tam giác BPC

=> PM vuông góc BC

Mà ME vuông góc BC

=> P, M, E thẳng hàng

=> BH, ME, AC đồng qui tại P

18 tháng 5 2018

a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800

=> Tứ giác BEHF nội tiếp.

b, Xét tứ giác AFEC có :

góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)

=> Tứ giác AFEC nội tiếp

2 tháng 2 2019

Gợi ý
c) JCIM là hình vuông: 3 góc = 90o = 90oCJ=CI; CJ=CI do KB=AE

10 tháng 5 2019

mình hỏi rồi nè

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:a) Tứ giác BCDE nội tiếp.b)góc AFE= ACE.Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt...
Đọc tiếp

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:

a) Tứ giác BCDE nội tiếp.

b)góc AFE= ACE.

Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:

a) Các tam giác KAB và IBC là những tam giác đêu.

b) Tứ giác KIBC nội tiếp.

Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:

a) Tứ giác FNEM nội tiêp.

b) Tứ giác CDFE nội tiếp.

Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.

a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó

b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn

Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm

0