K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

a) Xét tứ giác AEMD có

\(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), E∈AC, D∈AB)

\(\widehat{AEM}=90^0\)(ME⊥AC)

\(\widehat{ADM}=90^0\)(MD⊥AB)

Do đó: AEMD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b)

Ta có: K và M đối xứng nhau qua E(gt)

nên E là trung điểm của KM

Xét ΔAKM có

AE là đường cao ứng với cạnh KM(AE⊥ME, K∈ME)

AE là đường trung tuyến ứng với cạnh KM(E là trung điểm của KM)

Do đó: ΔAKM cân tại A(Định lí tam giác cân)

mà AE là đường trung tuyến ứng với cạnh đáy KM(E là trung điểm của KM)

nên AE là tia phân giác của \(\widehat{KAM}\)(Định lí tam giác cân)

hay \(\widehat{KAE}=\widehat{MAE}\)

Ta có: M và P đối xứng nhau qua D(gt)

nên D là trung điểm của MP

Xét ΔAMP có

AD là đường cao ứng với cạnh MP(AD⊥MD, P∈MD)

AD là đường trung tuyến ứng với cạnh MP(D là trung điểm của MP)

Do đó: ΔAMP cân tại A(Định lí tam giác cân)

mà AD là đường trung tuyến ứng với cạnh đáy MP(D là trung điểm của MP)

nên AD là tia phân giác của \(\widehat{MAP}\)(Định lí tam giác cân)

hay \(\widehat{PAD}=\widehat{MAD}\)

Ta có: tia AM nằm giữa hai tia AE, AD

nên \(\widehat{EAM}+\widehat{DAM}=\widehat{EAD}\)

hay \(\widehat{EAM}+\widehat{DAM}=90^0\)

Ta có: \(\widehat{KAP}=\widehat{KAE}+\widehat{MAE}+\widehat{MAD}+\widehat{PAD}\)

\(\Leftrightarrow\widehat{KAP}=2\cdot\left(\widehat{MAE}+\widehat{MAD}\right)\)

\(\Leftrightarrow\widehat{KAP}=2\cdot90^0=180^0\)

⇔K,A,P thẳng hàng(1)

Ta có: ΔAKM cân tại A(cmt)

nên AK=AM

Ta có: ΔAMP cân tại A(cmt)

nên AM=AP

mà AK=AM(cmt)

nên AP=AK(2)

Từ (1) và (2) suy ra A là trung điểm của KP

hay P đối xứng với K qua A(đpcm)

11 tháng 10 2021

điên ok

11 tháng 10 2021

TL

a) Xét tứ giác AEMD có

ˆEAD=900EAD^=900(ˆBAC=900BAC^=900, E∈AC, D∈AB)

ˆAEM=900AEM^=900(ME⊥AC)

ˆADM=900ADM^=900(MD⊥AB)

Do đó: AEMD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b)

Ta có: K và M đối xứng nhau qua E(gt)

nên E là trung điểm của KM

Xét ΔAKM có

AE là đường cao ứng với cạnh KM(AE⊥ME, K∈ME)

AE là đường trung tuyến ứng với cạnh KM(E là trung điểm của KM)

Do đó: ΔAKM cân tại A(Định lí tam giác cân)

mà AE là đường trung tuyến ứng với cạnh đáy KM(E là trung điểm của KM)

nên AE là tia phân giác của ˆKAMKAM^(Định lí tam giác cân)

hay ˆKAE=ˆMAEKAE^=MAE^

Ta có: M và P đối xứng nhau qua D(gt)

nên D là trung điểm của MP

Xét ΔAMP có

AD là đường cao ứng với cạnh MP(AD⊥MD, P∈MD)

AD là đường trung tuyến ứng với cạnh MP(D là trung điểm của MP)

Do đó: ΔAMP cân tại A(Định lí tam giác cân)

mà AD là đường trung tuyến ứng với cạnh đáy MP(D là trung điểm của MP)

nên AD là tia phân giác của ˆMAPMAP^(Định lí tam giác cân)

hay ˆPAD=ˆMADPAD^=MAD^

Ta có: tia AM nằm giữa hai tia AE, AD

nên ˆEAM+ˆDAM=ˆEADEAM^+DAM^=EAD^

hay ˆEAM+ˆDAM=900EAM^+DAM^=900

Ta có: ˆKAP=ˆKAE+ˆMAE+ˆMAD+ˆPADKAP^=KAE^+MAE^+MAD^+PAD^

⇔ˆKAP=2⋅(ˆMAE+ˆMAD)⇔KAP^=2⋅(MAE^+MAD^)

⇔ˆKAP=2⋅900=1800⇔KAP^=2⋅900=1800

⇔K,A,P thẳng hàng(1)

Ta có: ΔAKM cân tại A(cmt)

nên AK=AM

Ta có: ΔAMP cân tại A(cmt)

nên AM=AP

mà AK=AM(cmt)

nên AP=AK(2)

Từ (1) và (2) suy ra A là trung điểm của KP

hay P đối xứng với K qua A(đpcm)

HT

18 tháng 10 2021

a: Xét tứ giác AEMD có 

\(\widehat{AEM}=\widehat{ADM}=\widehat{DAE}=90^0\)

Do đó: AEMD là hình chữ nhật

2 tháng 1 2023

help mekhocroi

a: Xét tứ giac AEMD có

góc AEM=góc ADM=góc DAE=90 độ

nen AEMD là hình chữ nhật

b: Xét ΔAMP có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAMP cân tại A

=>AB là phân giác của góc MAP(1)

Xét ΔAMK có

AC vừa là đường cao, vừa là trung tuyến

nên ΔMKA cân tại A

=>AC là phân giác của góc MAK(2)

Từ (1), (2) suy ra góc KAP=2*90=180 độ

=>K,A,P thẳng hàng

mà AK=AP

nên A là trung điểm của KP