K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

A C B H D x

a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:

\(AH=BD\left(gt\right)\)

\(\widehat{ABH}=\widehat{DHB}\)( 2 góc so le trong do Bx // AH )

HB là cạnh chung

\(\Rightarrow\Delta AHB=\Delta DBH\left(c.g.c\right)\left(đpcm\right)\)

b) Vì \(\Delta AHB=\Delta DBH\left(cmt\right)\)

\(\Rightarrow AB=DH\)( 2 cạnh tương ứng )

Xét \(\Delta ABC\left(\widehat{A}=90^0\right)\)có:

\(AB^2+AC^2=BC^2\)( định lý py-ta-go )

\(\Rightarrow AB^2+12^2=15^2\)

\(\Rightarrow AB^2=81\)

\(\Rightarrow AB=\sqrt{81}\)

\(\Rightarrow AB=9cm\)

\(\Rightarrow DH=9cm\)

21 tháng 7 2016

khó quákhocroi

21 tháng 7 2016

Bạn làm giúp mình vớibucminh

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0
1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

10 tháng 8 2018

Hình em tự vẽ nha.

a, Xét \(\Delta AHB\)và \(\Delta DBH\)có:

\(AH=BD\left(gt\right)\)

\(\widehat{AHB}=\widehat{DBH}=90^o\)

\(HB\)chung

\(\Rightarrow\Delta AHB=\Delta DBH\left(c-g-c\right)\)

b, Ta có: \(\Delta AHB=\Delta DBH\left(c-g-c\right)\Rightarrow\widehat{ABH}=\widehat{DHB}\)mà 2 góc này ở vị trí so le trong \(\Rightarrow AB//HD\)

c, \(\Delta AHB\)có: \(\widehat{AHB}=90^o\Rightarrow\widehat{BAH}+\widehat{ABH}=90^o\)(2 góc nhọn phụ nhau)

                                                    hay \(35^o+\widehat{ABH}=90^o\)

                                                                         \(\widehat{ABH}=65^o\)

\(\Delta ABC\)có: \(\widehat{BAC}=90^o\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)(2 góc nhọn phụ nhau)

                                               hay \(65^o+\widehat{ACB}=90^o\)

                                                                    \(\widehat{ACB}=35^o\)

20 tháng 12 2016

a) Xét ΔAHB và ΔDBH có:

HB chung

AHB = DBH (= 90)

AH = DB (gt)

=> ΔAHB = ΔDBH ( c.g.c )

b) Vì ΔAHB = ΔDBH ( theo câu a)

nên ABH = BHD ( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong nên AB // DH

c) Ta có góc ABH + BAH = 90 độ ( tc tg vuông )

=> ABH + 35 = 90

=> ABH = 55 độ hay ABC = 55

Áp dụng tc tổng 3 góc trong 1 tg ta có:

BAC + ABC + BCA = 180

=> 90 + 55 + BCA = 180

=> ACB = 35 độ

 

20 tháng 12 2016

ko vẽ hình đc ko bn

 

a: Xét ΔAHB vuông tại H và ΔEBH vuông tại B có 

BH chung

\(\widehat{HBA}=\widehat{BHE}\)

Do đó: ΔAHB=ΔEBH

b: AB=6cm

=>EH=6cm

12 tháng 3 2020
https://i.imgur.com/Lymtvvq.jpg