K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Lời giải:
a.

Xét tam giác $AMB$ và $EMC$ có:

$\widehat{AMB}=\widehat{EMC}$ (đối đỉnh)

$AM=EM$

$MB=MC$

$\Rightarrow \triangle AMB=\triangle EMC$ (c.g.c)

b.

Vì $\triangle AMB=\triangle EMC$ nên $\widehat{MAB}=\widehat{MEC}$

Mà 2 góc này ở vị trí so le trong nên $EC\parallel AB$

Mà $AB\perp AC$ nên $EC\perp AC$ (đpcm)

c.

Vì $\triangle AMB=\triangle EMC$ nên:

$AB=EC$

Vì $EC\perp AC$ nên $\widehat{ECA}=90^0=\widehat{BAC}$

Xét tam giác $ECA$ và $BAC$ có:
$\widehat{ECA}=\widehat{BAC}=90^0$ (cmt)

$AC$ chung

$EC=BA$ (cmt)

$\Rightarrow \triangle ECA=\triangle BAC$ (c.g.c)

$\Rightarrow EA=BC$

Mà $EA=2AM$ nên $2AM=BC$ (đpcm)

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Hình vẽ:

28 tháng 3 2021

a) Xét tg AMB và EMC có :

MA=ME(gt)

MB=MC(gt)

\(\widehat{AMB}=\widehat{CME}\left(đđ\right)\)

=> Tg AMB=EMC(c.g.c) (đccm)

b) Do tg AMB=EMC (cmt)

\(\Rightarrow\widehat{B}=\widehat{ECM}\)

=> AB//EC

\(\Rightarrow\widehat{BAC}=\widehat{ECA}=90^o\)

\(\Rightarrow AC\perp CE\left(đccm\right)\)

c) Do tg ABM=CEM (cmt)

\(\Rightarrow AM=MC=\frac{BC}{2}\)

Hay nói cách khác : BC=2AM (đccm)

#H

24 tháng 11 2019

A B C E M

a) Xét t/giác AMB và t/giác EMC

có  MA = ME (gt)

   BM = MC (gt)

 \(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)

=> t/giác AMB = t/giác EMC (c.g.c)

b) Do t/giác AMB = t/giác EMC (cmt)

=> \(\widehat{BAM}=\widehat{MEC}\)(2 góc t/ứng)

mà 2 góc này ở vị trí so le trong

=> AB // CE

=> \(\widehat{A}+\widehat{C}=180^0\) (trong cùng phía)

mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CE

c) Xét t/giác ABC vuông tại A có AM là đường trung tuyến

=> AM = BM = MC = 1/2BC

=> BC = 2AM

HD C2: CM t/giác ABC = t/giác CEA (C.g.c)

=>  BC = EA (2 cạnh t/ứng

=> 1/2BC = 1/2EM

=> 1/2BC = MA (vì EM = MA = 1/2EM)

=> AM = 2BC

23 tháng 8 2022

ko biết

a: Xét ΔMAB và ΔMEC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔMAB=ΔMEC

b: AC>AB

=>AC>CE

c: góc BAM=góc CEA

mà góc CEA>góc CAM

nên góc BAM>góc CAM

21 tháng 12 2018

https://cunghocvui.com/danh-muc/toan-lop-7 Trong này có lời giải nhée

15 tháng 12 2019

Xét \(\Delta ABM\)\(\Delta ECM\)có :

\(M_1=M_2\)(đối đỉnh)

\(BM=CM\)(gt)

\(AM=EM\)(gt)

\(=>\Delta ABM=\Delta ECM\)(c.g.c)

b,Do \(\Delta ABM=\Delta ECM\)(câu a)

\(=>A=E\)

\(=>AB//EC\)(so le trong)

c, Do \(HF\)là tia đối của tia \(HA\)(1)

\(AHB=90^0\)(2)

Từ (1) và (2) => \(FHB=AHB=90^0\)

Xét \(\Delta AHB\)và \(\Delta FHB\)có :

\(AH=FH\)(gt)

\(HB\)(cạnh chung)

\(AHB=FHB\)(c/m trên)

\(=>\Delta AHB=\Delta FHB\)(c.g.c)

\(=>ABH=FBH\)

\(=>ĐPCM\)

P/S: Chưa check lại và chưa ghi dấu nón cho góc =))

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui

a: Xét ΔAMB và ΔEMC co

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xet ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAD cân tại B

=>BD=BA=CE

c: Xét ΔAMD có

MH vừa là đường cao, vừa là trung tuyến

nên ΔAMD cân tại M

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE