Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 \(\Delta\) \(AMB\) và \(DMC\) có:
\(AM=DM\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)
\(MB=MC\) (vì M là trung điểm của \(BC\))
=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)
=> \(AB=CD\) (2 cạnh tương ứng)
=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng)
Hay \(\widehat{ABC}=\widehat{DCB}.\)
c) Xét 2 \(\Delta\) \(ABC\) và \(DCB\) có:
\(AB=CD\left(cmt\right)\)
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
Cạnh BC chung
=> \(\Delta ABC=\Delta DCB\left(c-g-c\right).\)
d) Theo câu c) ta có \(\Delta ABC=\Delta DCB.\)
=> \(AC=BD\) (2 cạnh tương ứng)
=> \(\widehat{BAC}=\widehat{CDB}\) (2 góc tương ứng)
Mà \(\widehat{BAC}=90^0\left(gt\right)\)
=> \(\widehat{CDB}=90^0\)
Vậy \(\widehat{CDB}=90^0.\)
Chúc bạn học tốt!
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a) Vì M là trung điểm của BC
=> BM = CM
Xét tam giác ABM và tam giác DCM có:
AM = DM(gt)
góc AMB = DMC (đối đỉnh)
VM = CM (cmt)
=> đpcm
b) Xét tam giác BDM và tam giác CMA có:
BM = CM (cmt)
góc BMD = CMA (đối đỉnh)
DM = AM (gt)
=> tam giác BDM = tam giác CMA (cgc)
=> BD = AC( 2 cạnh tương ứng)
góc ACM = góc DBM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong của 2 đường thẳng BD và AC
=> BD//AC
A B C D M
a) Xét ΔAMB và ΔDMC có:
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)
MB=MC(gt)
=> ΔAMB=ΔDMC(c.g.c)
b)Vì: ΔAMB=ΔDMC(cmt)
=> AB=DC ; \(\widehat{ABC}=\widehat{DCB}\)
Xét ΔABC và ΔDCB có:
BC: cạnh chung
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
AB=DC(cmt)
=> ΔABC=ΔDCB(c.g.c)
=>AC=BD
\(\widehat{ACB}=\widehat{DBC}\) . Mà hai góc này ở vị trí sole trong
=>AC//BD
Vì: ΔABC=ΔDCB(cmt)
=> \(\widehat{BAC}=\widehat{CDB}=90^o\)
Cách lớp 8:
Bạn phải nói là AM là đường trung tuyến ứng với cạnh huyền ms đúng chứ
a: Xét ΔAMB và ΔDMC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔAMB=ΔDMC
=>AB=CD
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
B D A C
Hình hơi xấu xíu :vv
a) Xét t.giác AMB và t.giác DMC có :
MA = MD ( gt )
\(\widehat{AMB}=\widehat{DMC}\left(doi-dinh\right)\)
MB = MC (gt)
Vậy t.giác AMB = t.giác DMC (c.g.c)
b) Do : t.giác AMB = t.giác DMC ( cmt )
=> AB = DC ; \(\widehat{ABC}=\widehat{DCB}\)
Xét t.giác ABC và t.giác DCB có :
BC : cạnh chung
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
AB = DC ( cmt )
Vậy t.giác ABC = t.giác DCB ( c.g.c )
=> AC = BD
\(\widehat{ACB}=\widehat{DBC}\) mà hai góc này ở vị trí so le trong.
=> AC // BD
Vì : t.giác ABC = t.giác DCB ( cmt )
=> \(\widehat{BAC}=\widehat{BDC}=90^0\)