Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D
a) Tam giác AMB = tam giác CMD theo trường hợp C.G.C
b) Tứ giác ABDC là hình bình hành vì có hai đường chéo AD và BC cắt nhau ở trung điểm mỗi đường.
Suy ra AC song song và bằng BD
c) Do ABDC là hình bình hành và góc A bằng 1 vuông nên ABDC là hình chữ nhật => Tam giác ABC = tam giác DCB
=> Góc BDC = 1 vuông
A B C D M
a) Xét ΔAMB và ΔDMC có:
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)
MB=MC(gt)
=> ΔAMB=ΔDMC(c.g.c)
b)Vì: ΔAMB=ΔDMC(cmt)
=> AB=DC ; \(\widehat{ABC}=\widehat{DCB}\)
Xét ΔABC và ΔDCB có:
BC: cạnh chung
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
AB=DC(cmt)
=> ΔABC=ΔDCB(c.g.c)
=>AC=BD
\(\widehat{ACB}=\widehat{DBC}\) . Mà hai góc này ở vị trí sole trong
=>AC//BD
Vì: ΔABC=ΔDCB(cmt)
=> \(\widehat{BAC}=\widehat{CDB}=90^o\)
a) Xét tam giác ABM và tam giác DCM có
+ BM=CM ( gt)
+ Góc AMB = góc DMC ( đối đỉnh)
+ AM = DM
=> tam giác ABM = tam giác DCM ( c-g-c)
b) Vì tam giác ABM = tam giác DCM
=> góc BAM = Góc CDM ( 2 góc tương ứng )
Ta có : Góc BAM = Góc CDM ( c/m trên)
Mà góc BAM + CAM = 180độ( 2 góc kề bù ) (1)
góc CDM + BDM = 180độ ( 2 góc kề bù ) (2)
Mà góc BAM = góc CDM
Từ (1) và (2) => Góc CAM = góc BDM
Xét tam giác ACM và tam giác BDM có
+ Góc CAM = BDM ( c/m trên)
+ BM = CM ( gt)
+ góc BMD = góc AMC ( đối đỉnh )
=> Tam giác ACM = tam giác BDM ( g.c.g)
=> AC = BD ( 2 cạnh tương ứng)
c) bạn tự làm ạ . Mình bận
A B C D M
a) +) Xét \(\Delta\)ABM và \(\Delta\)DCM có
BM = CM ( gt)
\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đỉnh )
AM = DM ( gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c-g-c)
b) +) Xét \(\Delta\)AMC và \(\Delta\)DMB có
AM = DM ( gt)
\(\widehat{AMC}=\widehat{BMD}\) ( 2 góc đối đỉnh )
MC = MB ( gt)
=> \(\Delta\)AMC = \(\Delta\)DMB ( c-g-c)
=> AC = DB ( 2 cạnh tương ứng )
và \(\widehat{ACM}=\widehat{DBM}\) ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> AC // BD
c) +) Theo câu a ta có \(\Delta\)ABM = \(\Delta\)DCM
=> \(\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )
+) Xét \(\Delta\)ABC và \(\Delta\)DCB có
\(\widehat{ABM}=\widehat{DCM}\) ( cmt)
BC : cạnh chung
\(\widehat{ACM}=\widehat{DBM}\) ( cmt)
=> \(\Delta\)ABC = \(\Delta\)DCB (g-c-g)
=> \(\widehat{BAC}=\widehat{CDB}\) ( 2 góc tương ứng )
Mà \(\widehat{BAC}=90^o\) ( gt)
=> \(\widehat{CDB}=90^o\)
Học tốt
Takigawa Maraii
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC=BD
a) Xét tam giác AMB và tam giác CMD
có: - MD=MA(gt)
-góc DMC=góc BMA ( hai góc đối đỉnh)
- MB=MC(gt)
=> tam giác AMB= tam giác DMC(c.g.c)
xét tam giác AMB và tam giác CMD có
BM=MC (gt)
góc AMB =CMD( đối đỉnh)
AM=MD(gt)
=> tam giác AMB= CMD( C.g.c)
b, tứ giác ABDC có MB=MC=MA=MD => ABDC là hình bình hành
=> AC=BD và AC//BD
c, tứ giác ABDC là hình bình hành
=> góc A =góc C =90 độ