K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

Câu a  (1,0đ) Chứng minh :ABD = ACE

Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt)  (0,25đ)  x3=(0,75đ)  

Vậy ABD = ACE(cgc)                                                    (0,25đ)  

Câu b (0,75đ)  Chứng minh đúng vuông AMD =  vuông ANE vì có AD = AE;

(do ABD =ACE)                                                             (0,5đ)

Kết luận  AMD = ANE và suy ra  AM =AN)                (0,25đ)  

Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE  (cạnh huyền - góc nhọn )(0,25đ)

 Lập luận  chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)

Từ  lập luận để (2)

Kết hợp (1)và (2) KDE đều )(0,25đ)

16 tháng 5 2018

https://olm.vn/hoi-dap/question/1231127.html

16 tháng 5 2018

a) Xét tam giác ABD và tam giác ACE có:

          AB = AC (Vì tam giác ABC cân tại A)

         \(\widehat{ABC}=\widehat{ACB}\)(vì tam giác ABC cân tại A)

         BD = CE (gt)

Do đó ​tam giác ABD = tam giác ACE(cgc)

b) Ta có: tam giác ABD = tam giác ACE (cmt)

    \(\Rightarrow\)AD = AE (hai cạnh tương ứng) (1)

    \(\Rightarrow\widehat{BAD}=\widehat{CAE}\)(hai góc tương ứng) (2)

Từ (1) và (2) \(\Rightarrow\) tam giác vuông AMD = tam giác vuông ANE (ch-gn) 

     \(\Rightarrow\)AM = AN (hai cạnh tương ứng)

c) Trong tam giác ABC có góc BAC=120 độ

\(\Rightarrow\)Góc ABC = góc ACB = \(\frac{180-120}{2}\)=  30 độ

 Trong tam giác vuông BMD có góc MBD = 30 độ \(\Rightarrow\widehat{MDB}=60\)độ

Tương tự: Ta được, trong tam giác vuông NCE có góc NEC =60 độ

\(\Rightarrow\)\(\widehat{MDB}=\widehat{NEC}\)(=60 độ)

Mặt khác: \(\widehat{MDB}=\widehat{EDK}\left(đđ\right)\)

                \(\widehat{NEC}=\widehat{DEK}\left(đđ\right)\)

\(\Rightarrow\widehat{EDK}=\widehat{DEK}\)(=60 độ)

\(\Rightarrow\widehat{DKE}=180-\left(60\times2\right)=60\)độ

\(\Rightarrow\)Trong tam giác DKE có 3 góc EDK;DEK;DKE cùng bằng 60

  Hay tam giác DKE đều.

         

      

16 tháng 5 2018

a) Xét hai tam giác ABD và ACE ta có

AB = AC (gt)

\(\widehat{ABD}=\widehat{ACE}\left(gt\right)\)

BD = CE (gt)

Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

b) Ta có: \(\Delta ABD=\Delta ACE\)(câu a)

\(=>\hept{\begin{cases}\widehat{BAD}=\widehat{EAC}\\AD=AE\end{cases}}\)(cặp góc và cặp cạnh tương ứng)

Xét hai tam giác vuông AMD và ANE ta có

AD = AE (cmt)

\(\widehat{MAD}=\widehat{EAN}\left(cmt\right)\)

Do đó: \(\Delta AMD=\Delta ANE\left(c.h-g.n\right)\)

=> AM =AN (cặp cạnh tương ứng)

c) Trong \(\Delta ABC\)cân tại A ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}=\frac{180^o-120^0}{2}=30^o\)

Trong \(\Delta MDB\)vuông tại M ta có: \(\widehat{BDM}=90^o-\widehat{DBM}=90^o-30^o=60^o\)

Ta lại có: \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)

=> \(\widehat{MDB}=\widehat{NEC}\)(vì cùng bù với \(\widehat{ABC}\))

mà \(\hept{\begin{cases}\widehat{BDM}=\widehat{KDE}\left(đđ\right)\\\widehat{NEC}=\widehat{DEK}\left(đđ\right)\end{cases}}\)

=> \(\widehat{KDE}=\widehat{KED}=60^o\)(1)

Trong \(\Delta DKE\)có: \(\widehat{KDE}+\widehat{KED}+\widehat{DKE}=180^o\)

                            hay \(60^o+60^o+\widehat{DKE}=180^o\)   

                                    \(120^o+\widehat{DKE}=180^o\)

                                                      \(\widehat{DKE}=180^o-120^o\)

                                                      \(\widehat{DKE}=60^o\)(2)

Từ (1) và (2) => \(\Delta DKE\)là tam giác đều

P/s: k hộ thần :3

                                                     

15 tháng 5 2018

Câu a  (1,0đ) Chứng minh :ABD = ACE

Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt)  (0,25đ)  x3=(0,75đ)  

Vậy ABD = ACE(cgc)                                                    (0,25đ)  

Câu b (0,75đ)  Chứng minh đúng vuông AMD =  vuông ANE vì có AD = AE;

(do ABD =ACE)                                                             (0,5đ)

Kết luận  AMD = ANE và suy ra  AM =AN)                (0,25đ)  

Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE  (cạnh huyền - góc nhọn )(0,25đ)

 Lập luận  chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)

Từ  lập luận để (2)

Kết hợp (1)và (2) KDE đều )(0,25đ)

15 tháng 5 2018

Câu a  (1,0đ) Chứng minh :ABD = ACE

Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt)  (0,25đ)  x3=(0,75đ)  

Vậy ABD = ACE(cgc)                                                    (0,25đ)  

Câu b (0,75đ)  Chứng minh đúng vuông AMD =  vuông ANE vì có AD = AE;

(do ABD =ACE)                                                             (0,5đ)

Kết luận  AMD = ANE và suy ra  AM =AN)                (0,25đ)  

Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE  (cạnh huyền - góc nhọn )(0,25đ)

 Lập luận  chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)

Từ  lập luận để (2)

Kết hợp (1)và (2) KDE đều )(0,25đ)

19 tháng 1 2019

kẻ thêm me song song

rồi tự mò là song

6 tháng 2 2020

M Ở ĐÂU RA VẬY BẠN