Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago:
`BC^2=AB^2+AC^2`
`<=>BC^2=3^2+4^2`
`<=>BC=5(cm)`
AM là đường trung tuyến của `\DeltaABC`
`=> AM = (BC)/2 = 5/2 (cm)`
Đây nè tự vẽ tự diễn nha
Vì AM VÀ BN LÀ 2 ĐG TRUNG TUYẾN
=> AN = 1/2 AC = 1/2 . 3 = 3/2
=> BM = 1/2 AB = 1/2 . 4 = 2
ĐẶT GN = X => GB = 2X ( TÍNH CHẤT TRỌNG TÂM)
GM = Y => GA = 2Y ( .....)
TAM GIÁC ANG VUÔNG TẠI N , THEO PYTAGO
GN^2 + GA^2 = AN^2
=> X^2 + (2Y)^2 = (3/2) ^2
=> X^2 + 4Y^2 = 9/4 (1)
tAM GIÁC GBM VUÔNG TẠI G THEO PY TA GO:
GM^2 + GB^2 = MB^2
=> Y^2+ ( 2X)^2 = 2^2
=> Y^2 + 4X^2 = 4
=> 4( Y^2 + 4X^2 ) = 4.4
=> 4Y^ 2 + 16X^2 = 16 (2)
lấY (2) - (1) TA CÓ 4Y^2 + 16 X^2 - X^2 - 4Y^2 = 16 -9/4
=> 15 X^2 = 55/4
=> X^2 = 11/12
TA CÓ X^2 + 4 Y^2 = 9/4 <=> 11/12 + 4 .Y^2 = 9/4 => 4Y^2 = 9/4 -11/2 =>4Y ^2 = 4/3 => Y^2 = 1/3
tAM GIÁC GAB VUÔNG TẠI g , THEO PY TA GO
(GA)^2 + (GB)^2 = AB^2
=> (2X)^2 + (2Y)^2 = AB^2
=>4X^2 + 4Y^2 = AB^2
=> 4( X^2 + Y^2 ) = AB^2
=> 4 ( 11/12 + 1 / 3) =AB^2
=> 4.5/4 = AB^2
=> AB^2 = 5
=> AB = CĂN 5
a/
\(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\) (Pitago)
b/
Ta có
\(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5cm\) (Trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.\dfrac{5}{2}=\dfrac{5}{3}cm\) (trong tg 3 đường trung tuyến đồng quy tại 1 điểm và điểm đó cách đỉnh 1 khoảng bằng 2/3 độ dài đường trung tuyến mà trung tuyến đó đi qua)
c/
Xét tg ABN và tg CDN có
AN=CN (gt); BN=DN (gt)
\(\widehat{ANB}=\widehat{CND}\) (Góc đối đỉnh)
=> tg ABN=tg CDN (c.g.c)=> \(\widehat{BAN}=\widehat{DCN}=90^o\Rightarrow CD\perp AC\)
a, T/g AMC= t/g BMD(c-g-c)
b,T/g AMC= t/g BMD(c-g-c) \(\Rightarrow\widehat{DBM}=\widehat{ACM}\) mà chúng ở vị trí so le trong \(\Rightarrow BD\)song song AC
c, Diện tích tam giác ABC là : (3.4):2=6(cm) (1) hay (BC.AM):2(2) ;Áp dụng đlí Py-ta-go vào tam giác ABC ta được BC=5cm (3)
Từ (1);(2);(3) \(\Rightarrow\)5.AM=12 \(\Rightarrow AM=\frac{12}{5}=2,4cm\)
d, Khoảng cách từ đỉnh A đến trong tâm G là \(\frac{2}{3}\)
Hok tốt (Hình dễ tự vẽ nha)
a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có
BC^2=AB^2+AC^2
=>BC^2=4^2+3^2
=>BC^2=16+9=25
=>BC=căn25=5 (cm)
vậy,BC=5cm
b)Xét tam giác ABC và AED có
AB=AE(gt)
 là góc chung
AC=AD(gt)
=>tam giác ABC=tam giác AED(c-g-c)
Xét tam giác AEB có:Â=90*;AE=AB
=>tam giác AEB vuông cân tại A
Vậy tam giác AEB vuông cân
c)Ta có EÂM+BÂM=90*
mà BÂM+MÂB=90*
=>EÂM=MÂB
mà MÂB=AÊD(cm câu b)
=>EÂM=AÊD hay EÂM=AÊM
xét tam giác EAM có: EÂM=AÊM(cmt)
=>tam giác EAM cân tại M
=>ME=MA (1)
Ta có góc ACM+CÂM=90*
mà BÂM+CÂM=90*
=>góc ACM=BÂM
mà góc ACM=góc ADM( cm câu b)
=>góc ADM=DÂM
Xét tam giác MAD có góc ADM=DÂM(cmt)
=>tam giác ADM cân tại M
=>MA=MD (2)
Từ (1) và (2) suy ra MA=ME=MD
ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền
=>MA=1/2ED
=>MA là đg trung tuyến ứng với cạnh ED
Vậy MA là đg trung tuyến của tam giác ADE
Xét tam giác ABC vuông tại A có AM là trung tuyến => AM = BC/2
=> BC = 2.AM = 2.41 = 82
Tam giác ABC vuông tại A nên : S ABC = AB.AC/2
Lại có : AH là đường cao nên S ABC = AH.BC/2
=> AB.AC/2 = AH.BC/2
=> AB.AC = AH.BC = 40.82 = 3280
Áp dụng định lý pitago trong tam giác ABC vuông tại A ta có :
AB^2+AC^2 = BC^2 = 82^2 = 6724
<=> (AB+AC)^2 = AB^2+AC^2+2.AB.AC = 6724+2.3280 = 13284
<=> AB+AC = \(18\sqrt{41}\)
(AC-AB)^2 = AB^2+AC^2-2.AB.AC = 6724-2.3280 = 164
<=> AC-AB = \(2\sqrt{41}\)( VÌ AC > AB )
=> AB = \(8\sqrt{41}\); AC = \(10\sqrt{41}\)
=> AB/AC = \(\frac{8\sqrt{41}}{10\sqrt{41}}\)= 4/5
Tk mk nha
△ABC vuông tại A có \(BC^2=AB^2+AC^2\) (định lý Pytago)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△ABC vuông tại A có AM là đường trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5\left(cm\right)\)