Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha !!
a) Xét tam giác ABH và tam giác EBH có:
góc ABH = góc EBH ( BH là tia p/giác)
BH: chung
BAH = EBH = 90 độ
=> tam giác ABH = tam giác EBH ( cạnh huyền- cạnh góc vuông )
b) Gọi M là giao điểm của AE và BH
Xét tam giác ABM và tam giác EBM có
BM: chung
ABM=EBM( BH là phân Giác)
AB=BE( tam giác ABH=tam giácEBH)
=> tam giác ABM=tam giác EBM ( c.g.c)
=> ME=MA ( 2 cạnh tương ứng) (1)
Và BMA=BME , Mà BMA+ BME = 180 ( 2 góc kề bù) => BME = 180/2=90
=> BM vuông góc AE(2)
Từ (1), (2) => BH là tt của AE
c)Trong tam giác EHC vuông tại E có HC là cạnh huyền => HC >HE
Mà AH = HE ( tam giác ABH=tam giácEBH)
=> HC > AH hay HA < HC
d) nhận xét tam giác IBC là tam giác cân vì BH vừa là phận giác vừa là đường cao ......
hình : tự vẽ
a) Xét hai tam giác vuông BAH và BEH có :
góc ABH = góc EBH ( do BH là đường p/g của góc ABE )
BH là cạnh chung
nên tam giác BAH = tam giác BEH ( cạnh huyền - góc nhọn )
c) Do tam giác ABC vuông tại A => góc BAC = 90 độ
Có : góc BAC + góc CAI = 180 độ ( hai góc kề bù )
( hay góc BAH + góC HAI )
90 độ + góc CAI = 180 độ
=> góc CAI =90 độ
Do tam giác ABH = tam giác EBH ( cm phần a ) => AH=EH ( hai cạnh tương ứng )
Do HE vuông góc với BC => góc HEC = 90 độ
Xét hai tam giác AHI và EHC có :
góc HAI = góc HEC ( = 90độ )
AH=EH ( cm trên )
góc AHI = góc EHI ( hai góc đối đỉnh )
nên tam giác AHI = tam giác EHC ( g.c.g )
a) Xét 2 tam giác vuông: \(\Delta ABM\) và \(\Delta EBM\) có:
\(\widehat{ABM}=\widehat{EBM}\)(gt)
\(BM:\) CHUNG
suy ra: \(\Delta ABM=\Delta EBM\) (CH_GN)
b) \(\Delta ABM=\Delta EBM\)
\(\Rightarrow\)\(AB=EB\) => B thuộc trung trực AE
\(MA=ME\) => M thuộc trung tính AE
suy ra: BM là trung trực AE
c) \(\Delta EMC\) vuông tại E
=> \(EM< MC\)
mà \(EM=AM\)
\(\Rightarrow\)\(AM< MC\)
a) Xét tam giác BHA và BHE có:
BD chung
ˆABD^=ˆEBD^(vì BD là phân giác ˆBB^)
ˆBHA^=ˆBHE^(vì AH vuông góc với Bd tại H)
⇒Tam giác BHA=tam giac BHE(c.g.v-g.n.k)
b) Xét Tam giác BDA và tam giác BDE có
BD chung
BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))
ABD=EBD( vì BD là phân giác củaˆBB^)
⇒⇒Tam giác BDA = Tam giác BDE(c.g.c)
⇒⇒ˆBEA^=ˆA^= 90o(2 canh tương ứng và ˆA^= 90o)
ED vuông góc với B tại E
c, AD = DE
DE < CD do tam giác CDE vuông tại E
=> AD < DC
d, DA= DE do tam giác ABD = tam giác EBD (Câu b)
=> tam giác DAE cân tại D (đn)
=> ^DAE = ^DEA (tc) (1)
có : AK _|_ BC (gt) ; DE _|_ BC (câu b)
=> DE // AK
=> ^DEA = ^EAK (slt) và (1)
=> ^DAE = ^EAK mà AE nằm giữa AD và AK
=> AE là phân giác của ^CAK (đpcm)
a) Vì EH ⊥ BC ( gt )
=> ΔBHE vuông tại H
Xét tam giác vuông BAE và tam giác vuông BHE có :
BE chung
∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )
=> ΔBAE = ΔBHE ( cạnh huyền - góc nhọn )
b) Gọi I là giao điểm của AH và BE
Xét ΔABI và ΔHBI có :
BA = BH (ΔBAE = ΔBHE (cmt)
∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )
BI chung
=> ΔABI = ΔHBI ( c.g.c )
=> ∠AIB = ∠AIH ( 2 góc tương ứng )
Mà ∠AIB + ∠AIH = 1800 ( 2 góc kề bù )
=> ∠AIB = ∠AIH = 900
=> BI ⊥ AH (1)
Ta có: IA = IH ( ΔABI = ΔHBI ( cmt )
Mà I nằm giữa hai điểm A và H (2)
=> I là trung điểm của AH ( 3)
Từ (1) (2) (3) => BI là trung trực của AH
Hay BE là trung trực của AH
c) Xét ΔKAE và ΔCHE có:
∠KAE = ∠CHE ( = 900 )
AE = HE ( ΔBAE = ΔBHE (cmt)
∠AEK = ∠HEC ( 2 góc đối đỉnh )
=> ΔKAE = ΔCHE ( g.c.g )
=> EK = EC ( 2 cạnh tương ứng )
a) Áp dụng Pytago dễ dàng tính được AC=4
b) Xét hai tam giác vuông ABD và HBD có
BD cạnh chung
góc ABD = góc HBD (BD là phân giác góc B)
Nên hai tam giác trên bằng nhau (cạnh huyền - góc nhọn)
Suy ra AB = BH
AD = DH
Suy ra BD là trung trực của AH (định lý 2)
c) Ý bạn là E là giao điểm của AH và BD?
Hay E là giao điểm của DH và AB?
`a)`
Xét △ABH và △EBC có:
BH cạnh chung
\(\widehat{BAH}=\widehat{BEH}\)
\(\widehat{ABH}=\widehat{EBH}\)
`=> △ABH = △EBC`
`b)`
Ta có:
`△ABH = △EBC`
`=> AB = BE`
=> △ABE cân tại B
Xét `△ABE` cân tại B có:
`BH` là đường phân giác
=> `BH` là đường trung trực
`c)`
`Δ ABH = Δ EBC`
=> `AH = HE` (2 cạnh tương ứng) (1)
Xét tam giác HEC vuông tại E
=> `HC > HE` ( vì HC là cạnh huyền)(2)
MÀ `AH = HE`
nên `HA < HC`
`d)` có bị sai đề không vậy bạn
Sửa đề
d) chứng minh BH vuông góc với IC
Bài làm:
Xét `△ABE` cân tại `B` có:
`BH` là đường phân giác
`=> BH` là đường cao
`=> BH⊥ IC`