Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác AHB và tam giác CAB có
H = A = 90
C chung
=> AHB đồng dạng CAB ( g.g )
=>\(\frac{AB}{BC}=\frac{HB}{AB}\Leftrightarrow AB^2=HB.BC\Leftrightarrow AB=\sqrt{175.112}=140\)
\(AH=\sqrt{AB^2-BH^2}=\sqrt{140^2-112^2}=84\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{175^2-140^2}=105\)
VÌ AD là tia phân giác trogn tam giác ABC
\(\frac{BD}{AB}=\frac{DC}{AC}\)
THEO T/C DÃY TĨ SỐ = NHAU
\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{175}{140+105}=\frac{5}{7}\)
\(\frac{BD}{AB}=\frac{5}{7}\Rightarrow BD=\frac{5.AB}{7}=\frac{5.140}{7}=100\)
HD = HB - BD = 112 -100 = 12
\(AD=\sqrt{AH^2+HD^2}=\sqrt{12^2+84^2}=85\)
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Bài 1:
Xét ΔABC có AD là phân giác
nen AB/BD=AC/CD
=>AB/3=AC/4
Đặt AB/3=AC/4=k
=>AB=3k; AC=4k
Ta có: \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow25k^2=35^2\)
=>k2=49
=>k=7
=>AB=21cm; AC=28cm