K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác ABC vuông tại A, đường cao AH có:

B C 2 = A B 2 + A C 2 = 25 ⇒ BC = 5(cm)

AB2 = BH.BC ⇒ BH = AB2/BC = 9/5 = 1,8(cm)

BH + CH = BC⇒ CH = BC - BH = 5 - 1,8 = 3,2 (cm)

A H 2 = BH.CH ⇒ AH = B H . C H = 1 , 8 . 3 , 2 = 2,4 (cm)

Xét tứ giác AMHN có:

∠(MAN) = ∠(ANH) = ∠(AMH) = 90 0

⇒ Tứ giác AMHN là hình chữ nhật

⇒ MN = AH = 2,4 (cm)

12 tháng 11 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

28 tháng 7 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tam giác AHB vuông tại H, HM là đường cao có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

∠(AMN) + ∠(ANM ) =  90 0  ⇒ ∠(ANM ) = 90 0 - ∠(AMN) = 53 , 1 0

a: BC=10cm

BH=3,6cm

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

a: ΔAHB vuông tại H có HM là đường cao

nên AM*MB=HM^2

ΔAHC vuông tại H có HN là đường cao

nên AN*NC=NH^2

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

=>MN^2=HM^2+HN^2

=AM*MB+AN*NC

b: ΔABC vuông tạiA có AH là đường cao

nên \(AB^2=BH\cdot BC;AC^2=CH\cdot CB\)

=>\(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d

14 tháng 10 2021

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay AH=2,4(cm)

Xét tứ giác AMHN có 

\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=MN=2,4(cm)