Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABH\approx\Delta CAH\)\(\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\Rightarrow\frac{5}{6}=\frac{30}{CH}\Rightarrow CH=36\)
mà \(BH.CH=AH^2\Rightarrow BH=\frac{AH^2}{CH}=\frac{30^2}{36}=25\)
Theo điều kiện bài ra thì tam giác trên không thể nào là tam giác vuông được nha bạn! Cảm phiền bạn xem lại đề, ít nhất đoạn BC phải là 10cm thì mới vuông nổi.
Sửa đề: BC=10cm
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
CH=BC-BH=6,4cm
áp dụng hệ thức lượng trong tam giác ABC
AN2=BH.BC
=>BC=AB2:BH=25
từ đó áp dụng pytago tính AC=20
lại áp dụng hệ thức lượng ta có;
AH.BC=AB.AC
=>AH=(AB.AC):BC=12
trong tam giác vuông trung tuyễn ứng vs cạnh huyền có số đo = nửa cạnh huyền
=> AM=12,5
=> HM=3,5 theo pytago
=> SAMH=1phần 2 AH.HM=21
a) Áp dụng hệ thức giữa cạnh và góc vào \(\Delta ABC\) vuông tại A đường cao AH ta có:
\(AB^2=HB.BC\)
hay \(AB^2=3,6.\left(3,6+6,4\right)\)
\(\Rightarrow AB^2=3,6.10\)
\(\Rightarrow AB^2=36\)
\(\Rightarrow AB=6\) ( vì AB > 0 ) ( cm)
+ \(AC^2=HC.BC\)
HAY \(AC^2=6,4.10\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=8\left(cm\right)\) ( vì \(AC>0\))
+ \(AH.BC=AB.AC\)
hay \(AH=\frac{AB.AC}{BC}\)
\(\Rightarrow AH=\frac{6.8}{10}\)
\(\Rightarrow AH=4,8\left(cm\right)\)
b) c) mk ko biết làm
Ta có BC=HB+HC=3,6+6,4=10(cm)
Xét △ABC vuông tại A đường cao AH:
AB2=BC.HB=10.3,6=36⇒AB=6(cm)
AC2=BC.HC=10.6,4=64⇒AC=8(cm)
\(AC.AB=BC.AH\Rightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
hay