K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC~ΔHAC

b: ΔABC~ΔHBA

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

=>\(BA^2=BH\cdot BC\)

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

Xét ΔCAB có CD là phân giác

nên \(\dfrac{AD}{AC}=\dfrac{BD}{BC}\)

=>\(\dfrac{AD}{24}=\dfrac{BD}{30}\)

=>\(\dfrac{AD}{4}=\dfrac{BD}{5}\)

mà AD+BD=18cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{4}=\dfrac{BD}{5}=\dfrac{AD+BD}{4+5}=\dfrac{18}{9}=2\)

=>\(AD=4\cdot2=8\left(cm\right)\)

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

d: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

hay BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)

Do đó: BD=15/7(cm); CD=20/7(cm)

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC

=>HA^2=HB*HC

6 tháng 4 2019

A B C H D 3 4

Xét \(\Delta ABC\)\(\perp\) tại \(A\)

Áp dụng định lí py - ta - go :

BC2 = AB2 + AC2

BC2 = 32 + 42

BC2 = 9 + 16

BC2 = 25

BC = 5 cm

Vậy BC = 5 cm .

Xét \(\Delta ABC\)có BD là đường phân giác \(\widehat{B}\)

\(\Rightarrow\)\(\frac{DA}{DC}=\frac{AB}{BC}\)\(\Rightarrow\) \(\frac{DA}{DC}=\frac{3}{5}\)\(\Rightarrow\) \(\frac{DA}{3}=\frac{DC}{5}\)\(=\frac{DA+DC}{3+5}=\frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow\)\(\frac{DA}{3}=\frac{1}{2}\)\(\Rightarrow\)\(DA=\frac{3}{2}=1,5\)cm

Ta có : AC = AD + DC

           4 = 1,5 + DC

\(\Rightarrow DC=2,5\)cm

Xét \(\Delta AHB\) và  \(\Delta CAB\) có :

         \(\widehat{AHB}\)\(=\)\(\widehat{CAB}\) ( cùng bằng 900 )

           \(\widehat{B}\) chung

\(\Rightarrow\)\(\Delta AHB\)\(~\)\(\Delta CAB\) ( g - g )

6 tháng 4 2019

Do \(\Delta AHB\) \(~\)\(\Delta CAB\)

\(\Rightarrow\)\(\frac{AB}{BH}=\frac{BC}{AB}\)\(\Rightarrow\)\(AB.AB=BH.BC\)\(\Rightarrow\)\(AB^2=BH.BC\)