K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

Ưu tiên câu c

17 tháng 5 2020

a) Tứ giác AIHK có góc H=K=I=A=90độ
=> AIHK LÀ HÌNH CHỮ NHẬT ( tỨ GIÁC CÓ 3 GÓC VUÔNG)

a: Xét tứ giác AIHK có

\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

Do đó: AIHK là hình chữ nhật

b: \(\widehat{AIK}=\widehat{AHK}\)

mà \(\widehat{AHK}=\widehat{C}\)

nên \(\widehat{AIK}=\widehat{C}\)

c: Xét ΔAIK vuông tại A và ΔACB vuông tại A có 

\(\widehat{AIK}=\widehat{C}\)

Do đó: ΔAIK∼ΔACB

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn

a: Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

nên AIHK là hình chữ nhật

Suy ra: AH=IK

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AH^2=AI\cdot AB\left(1\right)\)

Xét ΔAHC vuông tại H có HK là đường cao

nên \(AH^2=AK\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

hay AI/AC=AK/AB

Xét ΔAIK vuông tại A và ΔACB vuông tại A có

AI/AC=AK/AB

Do đó: ΔAIK\(\sim\)ΔACB

10 tháng 2 2023

tại sao AH^2 = AI. AB

 

18 tháng 3 2016

BT 1:

a/ Xét tg ABE và tg ACF có

^BAE=^CAF (AD là phân giác ^BAC)

^AEB=^AFC=90

=> tg ABE đồng dạng với tg ACF => \(\frac{AE}{AF}=\frac{BE}{CF}\) (1)

b/ Xét tg BDE và tg CDF có

^BDE=^CDF (góc đối đỉnh)

^BED=^CFD=90

=> tg BDE đồng dạng với tg CDF => \(\frac{DE}{DF}=\frac{BE}{CF}\) (2)

Từ (1) và (2) => \(\frac{AE}{AF}=\frac{DE}{DF}\Rightarrow AE.DE=AF.DE\)

BT 2:

a/ HI vg AB, AK vg AB => HI//AK ( cùng vg với AB)

cm tương tự cũng có AI//KH (cùng vg với AC)

=> AIHK là hbh (có các cặp cạnh dối // với nhau từng đôi một)

^BAC=90

=> AIHK là hcn

b/

+ Ta có ^ACB=^AHK (cùng phụ với ^HAC) (1)

+ Xét 2 tg vuông IAK và tg vuông HKA có

IA=HK (AIHK là hcn), AK chung => tg IAK = tg HKA (hai tg vuông có các cạnh góc vuông từng đội một băng nhau)

=> ^AIK=^AHK (2)

Từ (1) và (2) => ^AIK=^ACB

2 tháng 4 2017

Còn câu c sao ạ