K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác EAFH có 

\(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^0\)

Do đó: EAFH là hình chữ nhật

26 tháng 9 2021

undefined

28 tháng 10 2019

a, xét tứ giác AEHF có :

góc BAC = 90 do tam giác ABC vuông tại A (gt)

góc HEA = 90 do HE _|_ AB (Gt)

góc HFA = 90 do HF _|_ AC (gt)

=> tứ giác AEHF là hình chữ nhật (dh)

a) Xét tứ giác EAFH có 

\(\widehat{AFH}=90^0\)

\(\widehat{FAE}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: EAFH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: \(\widehat{IAC}=90^0-\widehat{AFE}\)

\(\widehat{ICA}=90^0-\widehat{B}\)

mà \(\widehat{AFE}=\widehat{B}\left(=\widehat{HAC}\right)\)

nên \(\widehat{IAC}=\widehat{ICA}\)

mà \(\widehat{IBA}=90^0-\widehat{ICA}\)

và \(\widehat{IAB}=90^0-\widehat{IAC}\)

nên \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)

nên ΔIAB cân tại I(Định lí đảo của tam giác cân)

Xét ΔIAC có \(\widehat{IAC}=\widehat{ICA}\)(cmt)

nên ΔIAC cân tại I(Định lí đảo của tam giác cân)

Ta có: IA=IB(ΔIAB cân tại I)

IA=IC(ΔIAC cân tại I)

Do đó: IB=IC

mà I nằm giữa B và C

nên I là trung điểm của BC(Đpcm)

9 tháng 7 2021

cho mik xin hình vs ạ hihi

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC           b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H...
Đọc tiếp

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

2
14 tháng 7 2018

Bài 1 nếu chứng minh cũng chỉ được góc EMD= 2 góc AEM thôi

14 tháng 7 2018

chứng minh kiểu gì vậy

18 tháng 12 2017

ai giúp mk đi đg cần gấp

18 tháng 12 2017

a)  ADME là hình chữ nhật vì có 3 góc vuông:  \(\widehat{A}\)\(\widehat{D}\)\(\widehat{E}\)= 900

b)  Để ADME là hình vuông thì AM là phân giác \(\widehat{A}\)

Vậy M là giao đường phân giác góc A với BC thì ADME là hình vuông

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0