K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2=BD.BA.CE.CA\)

\(=BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\)

\(\Rightarrow AH^3=BD.CE.BC\)

15 tháng 7 2021

ý bạn là chứng minh \(\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)

tam giác ABC vuông tại A có AH là đường cao 

\(\Rightarrow HB.HC=AH^2\Rightarrow\sqrt{HB.HC}=AH\)

Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.HC\right)^2=BH^2.CH^2\)

tam giác AHB vuông tại H có HD là đường cao \(\Rightarrow BH^2=BD.BA\)

tam giác AHC vuông tại H có HF là đường cao \(\Rightarrow CH^2=CE.CA\)

\(\Rightarrow BH^2.CH^2=BD.BA.CE.CA=BD.CE.\left(AB.AC\right)\)

tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\Rightarrow BD.CE.BC.AH=AH^4\)

\(\Rightarrow BD.CE.BC=AH^3\Rightarrow\sqrt[3]{BD.CE.BC}=AH\)

\(\Rightarrow\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)

17 tháng 8 2022

Cậu ơi cho mình hỏi tại sao AH= (AH2)2=(BH.HC)2 vậy ạ?

a: XétΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

18 tháng 8 2018

B A C D E H

a)  Áp dụng hệ thức lượng vào 2 tam giác vuông: AHB và AHC ta có:

\(AH^2=AD.AB\)

\(AH^2=AE.AC\)

suy ra:\(AD.AB=AE.AC\)

b)  \(AD.AB=AE.AC\)

=>   \(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét tam giác AED và tam giác ABC có:

\(\widehat{A}\)chung

\(\frac{AD}{AC}=\frac{AE}{AB}\)(cmt)

suy ra: \(\Delta AED~\Delta ABC\)