Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có: HE=HA(gt)
mà A,H,E thẳng hàng
nên H là trung điểm của AE
Xét ΔAED có
H là trung điểm của AE(cmt)
M là trung điểm của AD(A và D đối xứng nhau qua M)
Do đó: HM là đường trung bình của ΔAED(Định nghĩa đường trung bình của tam giác)
⇒HM//ED và \(HM=\dfrac{1}{2}\cdot ED\)(Định lí 2 về đường trung bình của tam giác)
b) Xét tứ giác ABDC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AD(A và D đối xứng nhau qua M)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)(ΔABC vuông tại A)
nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a: Xét tứ giác ABDC có
O là trung điểm chung của AD và BC
góc BAC=90 độ
Do đó: ABDC là hình chữ nhật
b: Xét ΔAED có HA/AE=AK/AD
nen HK//ED
=>ED vuông góc với AE
=>ΔAED vuông tại E
Xét ΔCAB và ΔCEB có
BA=BE
CB chung
AC=EC
Do đó: ΔCAB=ΔCEB
=>góc CEB=90 độ
=>ΔBEC vuông tại E
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc CAB=90 độ
Do đó: ABDC là hình chữ nhật
TÌM MỘT SỐ CÓ BÔN CHỮ SỐ,BIẾT CHỮ SỐ HÀNG TRĂM GẤP ĐÔI CHỮ SỐ HÀNG NGHÌN,CHỮ SỐ HÀNG CHỤC GẤP ĐÔI CHỮ SỐ HÀNG TRĂM, CHỮ SỐ HÀNG ĐƠN VỊ LỚN HƠN CHỮ SỐ HÀNG CHỤC LÀ 3.
Trịnh Mai Phương tham khảo bài mk làm nha:
Gọi M là trung điểm của HE.Vẽ hình CN DACF , gọi O là giao điểm 2 đường chéo HCN DACF.Cm được AH=HM=ME. Dùng đlí về đường trung bình của tam giác ADM cm được DM//BH và DM đi qua trung điểm I của CE và cắt CF tại N.Cm được CBDN là hình bình hành => N là trung điểm của CF=> IN là đường trung bình của tgCFE => IN//FE => FE vuông góc AE. Vì O là trung điểm của FA ( t/c đường chéo HCN)=> EO là đường trung tuyến ứng với cạnh huyền FA => EO = 1/2 FA = 1/2 DC => tgCDE vuông tại E ( đlí đảo về đường trung tuyến ứng với cạnh huyền) => gDEC = 90 độ.
bạn ơi cách này mình đọc qua trên mạng rồi bẠN có cáhc khác khôg?