Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự kẻ nha
a)Xét 2 tam giác vuông ABH và ACH có
Góc AHB = góc AHC (=90°)
AB= AC ( tam giác ABC cân tại A)
Góc ABC = góc ACB (tam giác ABC cân tại A)
=>2 tam giác vuông ABH=ACH (cạnh huyền -góc nhọn)
b)Tam giác ABC cân =>góc ABC=gócACB
=>gócABM=gócACN
Xét 2 tam giác ABM và ACN
AB=AC ( tam giác ABC cân tại A)
Góc ABM=góc ACN (cmt)
BM=CN(gt)
=> tam giác ABM=tam giác ACN
=>AM=AN
Do đó tam giác AMN cân tại A
c) Phần này hình như sai đề
A B C M N H E F K 1 2 1 1 2 3 3 2
a) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
\(\widehat{H_1}=\widehat{H_2}=90^0\)(gt)
\(\widehat{B_1}=\widehat{C_1}\) (gt)
=> t/giác ABH = t/giác ACH (ch - gn)
b) Ta có: \(\widehat{B_1}+\widehat{ABM}=180^0\)(kề bù)
\(\widehat{C_1}+\widehat{ACN}=180^0\) (kề bù)
Mà \(\widehat{B_1}=\widehat{C_1}\) (gt) => \(\widehat{ABM}=\widehat{ACN}\)
Xét t/giác ABM và t/giác ACN
có AB = AC (gt)
\(\widehat{ABM}=\widehat{ACN}\) (cmt)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
=> AM = AN (2 cạnh t/ứng)
=> t/giác AMN cân
c) Ta có: t/giác MEB vuông tại A => \(\widehat{M}+\widehat{B_2}=90^0\)
t/giác FCN vuông tại F => \(\widehat{C_2}+\widehat{N}=90^0\)
Mà \(\widehat{M}=\widehat{N}\)(Vì t/giác AMN cân tại A) => \(\widehat{B_2}=\widehat{C_2}\) (1)
Ta lại có: \(\widehat{B_2}=\widehat{B_3}\) (Đối đỉnh); \(\widehat{C_2}=\widehat{C_3}\)(đối đỉnh) (2)
Từ (1) và (2) => \(\widehat{B_3}=\widehat{C_3}\) => t/giác BKC cân tại K
có KH là đường cao
=> KH cũng là đường trung trực của cạnh BC (t/c của t/giác cân) (3)
(đoạn này chưa học có thể xét t/giác KBH và t/giác KCH => BH = CH => KH là đường trung trực)
t/giác ABH = t/giác ACH (cm câu a) => BH = CH
=> AH là đường trung tuyến
mà AH cũng là đường cao
=> AH là đường trung trực của cạnh BC (4)
Do A \(\ne\)K (5)
Từ (3); (4); (5) => A, H, K thẳng hàng
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Lại 1 câu hỏi tào lao, cân tại A sao lại cs AB> AC chứ!
a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì ΔAMC=ΔABNΔAMC=ΔABNnên
ˆFMA=ˆFBIFMA^=FBI^
mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O
=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O
Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O
Mà ˆIMB+ˆMBIIMB^+MBI^=900
=>...
Câu a
Xét tam giác vuông AB0 và tam giác vuông ACO
AB=AC( gt )
AO cạnh chung
=> Tam giác ABO = Tam giác ACO (ch-cgv)
=>OB=OC( 2 cạnh tương ứng )
Xét tam giác vuông MBO và tam giác vuông NCO
MB=NC ( gt)
OB=OC (cmt)
=>Tam giác MBO = Tam giác NCO( 2 cgv )
=>OM=ON
=>tam giác NOM cân tại 0
cTa có tam giác NOM cân tại O
Lại có : HOB^=HOC^ (cn câu a)
=.HOM^+MOB^=HON^+NOC^
Mà MOB^=NOC^ (cm câu a)
=>HOM^=HON^
Xét tam giác MEO và tam giác NEO
EO cạnh chung
EOM^=EON^ (cmt)
OM=ON ( cm câu a)
=>Tam giác EOM=tam giác EON ( c-g-c )
=> OEN^=OEM^
Mà OEN^+OEM^=180* (góc bẹt)
=>OEM^=OEN^=180*/2=90* ( đpcm )
A B C H M N I
HM _|_ AB (gt)
AB _|_ AC do tam giác ABC vuông tại A (gt)
AN; HM phân biệt
=> AN // HM (tc)
=> góc NAH = góc AHM (slt)
xét tam giác NAH và tam giác MHA có : AH chung
góc ANH = góc AMH = 90
=> tam giác NAH = tam giác MHA (ch-gn)
=> HM = AN (đn)
b, NA = HM (câu a)
xét tam giác NAM và tam giác HMA có : AM chung
góc NAM = góc HMA = 90
=> tam giác NAM = tam giác HMA (2cgv)
=> AH = MN (đn)
c, AN // HM (câu a)
=> góc NAH = góc AHM (slt) và góc ANM = góc NMH (slt)
xét tam giác NAI và tam giác MHI có : AN = MH (câu a)
=> tam giác NAI = tam giác MHI (g-c-g)
=> NI = IM (đn)
d, A B C H M N I