K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

hình hơi xấu bạn nhé 

ta có góc C = 30 độ nên 

=> góc B = 60 độ     (1)

ta lại có BM= BA 

=> tam giác ABM là ta giác cân tại B     (2) 

từ (1) và (2) => tam giác ABM lả tam giác đều 

b, ta có thể chứng minh tam giác AMC cân tại M ( vì có 2 góc kề đấy = nhau và = 30 độ ) 

=> MC = AM ( 1) 

theo câu a ta có 

ABM là tam giác đều nên AM = BM ( 2) 

từ (1)và (2) 

=> BM = MC mà BM + MC= BC 

=> AM = BM = BC/2

a: Xét ΔABC vuông tại A có \(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-30^0=60^0\)

Xét ΔBAM có BA=BM và \(\widehat{ABM}=60^0\)

nên ΔBAM đều

b: Ta có: ΔMAB đều

=>\(\widehat{MAB}=60^0\)

Ta có: \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}\)

=>\(\widehat{MAC}+60^0=90^0\)

=>\(\widehat{MAC}=30^0\)

Xét ΔMAC có \(\widehat{MAC}=\widehat{MCA}\left(=30^0\right)\)

nên ΔMAC cân tại M

=>MA=MC

mà MB=MA

nên MB=MC

=>M là trung điểm của BC

=>\(AM=MB=\dfrac{1}{2}BC\)

c: Ta có: ΔMAC cân tại M

mà MD là đường phân giác

nên MD\(\perp\)AC

Ta có: MD\(\perp\)AC

AB\(\perp\)AC

Do đó: MD//AB

12 tháng 12 2020

đề bài sai

12 tháng 12 2020

Điểm M và N

28 tháng 4 2018

(Bạn tự vẽ hình giùm)

a/ Ta có BA = BD (gt)

nên \(\Delta BAD\)cân tại B

=> \(\widehat{BAD}=\frac{180^o-\widehat{B}}{2}\)

=> \(\widehat{BAD}=\frac{180^o-60^o}{2}\)

=> \(\widehat{BAD}=\widehat{BDA}=60^o=\widehat{B}\)

=> \(\Delta BAD\)đều (đpcm)

b/ \(\Delta ABI\)và \(\Delta DBI\)có: AB = DB (gt)

\(\widehat{ABI}=\widehat{IBD}\)(BI là tia phân giác \(\widehat{B}\))

Cạnh BI chung

=> \(\Delta ABI\)\(\Delta DBI\)(c. g. c) => \(\widehat{A}=\widehat{BDI}=90^o\)(hai cạnh tương ứng)

và AI = DI (hai cạnh tương ứng)

=> BI = IC (quan hệ giữa đường xiên và hình chiếu)

nên \(\Delta BIC\)cân tại I (đpcm)

c/ Ta có \(\Delta BIC\)cân tại I (cmt)

=> Đường cao ID cũng là đường trung tuyến của \(\Delta BIC\)

=> D là trung điểm BC (đpcm)

d/ Ta có \(\Delta ABC\)vuông tại A

=> BC2 = AB2 + AC2 (định lý Pythagore)

=> AB2 + AC2 = 26= 676

và \(\frac{AB}{AC}=\frac{5}{2}\)=> \(\frac{AB}{5}=\frac{AC}{2}\)=> \(\frac{AB^2}{25}=\frac{AC^2}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{AB^2}{25}=\frac{AC^2}{4}=\frac{AB^2+AC^2}{25+4}=\frac{676}{29}\)

=> \(\hept{\begin{cases}\frac{AB}{5}=\frac{676}{29}\\\frac{AC}{2}=\frac{676}{29}\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{676}{29}.5\\AC=\frac{676}{29}.2\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{3380}{29}\left(cm\right)\\AC=\frac{1352}{29}\left(cm\right)\end{cases}}\)

18 tháng 4 2018

VẼ HÌNH ĐI

18 tháng 4 2018

Trên tia BC lấy điểm N,trên tia BC lấy điểm M sao cho BM=BC=BN là sao hả bạn 

xem lại đề bài nhé làm sao lại bằng BC được ??

ok, thanks nhưng dừng khoảng chừng là 2 giây, you lấy từ qanda

 

28 tháng 10 2016

Bạn tự vẽ hình nhé!

\(\Delta BDA=\Delta BDM\left(c.g.c\right)\)vì BA = BM (gt) ;\(\widehat{ABD}=\widehat{MBD}\)(BD là phân giác góc B : gt) ; chung BD

\(\Rightarrow\widehat{A}=\widehat{DMB}\)(2 góc tương ứng) mà\(\widehat{A}\)= 900 (\(\Delta ABC\)vuông tại A : gt)\(\Rightarrow\widehat{DMB}=90^0\)=> DM vuông góc BC