K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

a/  Xét tam giác ABM và tam giác EBM:

+    ^A = ^AEB ( = 90o)

+    BM chung

+    ^ABM = ^EBM ( do BM là phân giác ^B)

=>  Tam giác ABM = Tam giác EBM (ch - gn)

b/  Ta có: ^A = ^B + ^C = 90o (do tam giác ABC vuông tại A)

Mà ^C = 30o (gt)

=> ^B = 60o

Tam giác ABM = Tam giác EBM (cmt)

=> AB = EB (cặp cạnh tương ứng)

=> Tam giác ABE cân tại B 

Lại có: ^B = 60o (cmt)

=> Tam giác ABE đều 

28 tháng 3 2018

a)  Xét 2 tam giác vuông:   \(\Delta ABM\) và    \(\Delta EBM\) có:

   \(\widehat{ABM}=\widehat{EBM}\)(gt)

  \(BM:\) CHUNG

suy ra:    \(\Delta ABM=\Delta EBM\)  (CH_GN)

b)   \(\Delta ABM=\Delta EBM\)

\(\Rightarrow\)\(AB=EB\)  =>    B   thuộc trung trực AE

         \(MA=ME\) =>   M   thuộc trung tính   AE 

suy ra:   BM   là trung trực AE

c)    \(\Delta EMC\) vuông tại  E 

=>   \(EM< MC\)

mà   \(EM=AM\)

\(\Rightarrow\)\(AM< MC\)

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
27 tháng 3 2020

Bạn tự vẽ hình nha.

a,Xét tg ABE và tg HBE:

^BAE=^BHE=90*

^ABE=^HBE(BE là pg)

BE chung

=>tg ABE= tg HBE(ch-gn)

b,+,tg ABC có:^BAC=90*,^ABC=60*

=>^C=30*

+,tg BHE có: ^BHE=90*,^EBH=30*(^EHB=1/2ABC)

=>^HEB=60*

Mà HK // BE

=>^HBE=^EHK=60*(slt)

+, tg CHE có:^EHC=90*,^C=30*

=>HEC=60*

+,tg HEK có:

^EHK=60*,^HEC(^HEK)=60*

=>TG HEK đều(dhnb)

Phần c mik chỉ ghi các bước thôi còn bạn tự chình bày nhé.

c, +,CM:tg AEM=tg HEC(cgv-gnk)

=>AM=HC

+,CM:BM=BC

+,CM:tg BMI=tgBCI(cgc)

=>NM=NC

Xong r nha. Chúc bạn học tốt.

9 tháng 5 2022

bn ơi đúng câu khó mik ko bik lại nói thế

2 tháng 5 2018

a) Xét \(\Delta ABD\)và \(\Delta EBD\)có :

BD ( cạnh chung )

\(\widehat{ABD}=\widehat{EBD}\)( gt )

Suy ra : \(\Delta ABD\)\(\Delta EBD\)( cạnh huyền - góc nhọn )

\(\Rightarrow\)AB = BE 

\(\Rightarrow\)\(\Delta ABE\)cân tại B mà \(\widehat{ABE}=60^o\)nên \(\Delta ABE\)đều

c) vì \(\widehat{ABC}+\widehat{ACB}=90^o\)\(\Rightarrow\widehat{ACB}=90^o-60^o=30^o\)

Mà \(\widehat{ABD}=\widehat{DBE}=30^o\)

\(\Rightarrow\)\(\Delta DBC\)cân tại D có DE là đường cao nên cũng là trung tuyến

\(\Rightarrow\)E là trung điểm của BC

d) \(\Delta ABE\)đều có AH là đường cao nên cũng là đường trung trực 

\(\Rightarrow\)BF = EF

\(\Rightarrow\)\(\Delta BFE\)cân tại F

\(\Rightarrow\)\(\widehat{FBE}=\widehat{FEB}\)

Mà \(\widehat{FBE}=\widehat{ACB}\)

\(\Rightarrow\)\(\widehat{ACB}=\widehat{FEB}\)

Mà 2 góc này ở vị trị đồng vị nên EF // AC

2 tháng 5 2018

A B C E D F

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0
31 tháng 1 2019

a, xét tam giác ABM và tam giác KBM có: AB=BK, BM chung, góc ABM= góc KBM

suy ra 2 tam giác trên bằng nhau

hok tốt

1 tháng 2 2019

tu ve hinh : 

xet tamgiac ABM va tamgiac KBM co :  MB chung

goc ABM = goc MBK do BM la phan giac cua goc ABC (gt)

AB = AK (gt)

=> tammgiac ABM = tamgiac KBM (c - g - c)

11 tháng 4 2020

a, xét tam giác AMD và tam giác AND có : AD chung 

^MAD = ^NAD do AD là pg của ^BAC (gt)

^AMD = ^AND = 90  

=> tam giác AMD = tam giác AND (ch-gn)

b, xét tam giác BMD vuông tại M => ^B + ^MDB  = 90 (đl)

^B = 30 (gt)

=> ^MDB = 60 

tương tự tính đượng ^NDC = 60

có : ^MDB + ^NDC + ^MDN = 180

=> ^MDN = 60 

c, AB = AC do tam giác ABC cân tại A (gt)

AM = AN do tam giác AMD = tam giác AND (Câu a)

AB = AM + BM

AC = AN + NC 

=> BM = NC

xét tam giác DMB và tam giác DNC có : ^B = ^C

^DMB = ^DNC = 90

=> tam giác DMB = tam giác DNC (cgv-gnk)