Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔDAK vuông tại K có
AB=DA
góc ABH=góc DAK
=>ΔABH=ΔDAK
b: ΔABH=ΔDAK
=>BH=AK
mà AK<AD
nên BH<AD
a) Tam giác ABC vuông tại A có \(BC^2=AB^2+AC^2\)
=>BC2=32+42=25
=>BC=5
Vậy BC=5 cm
b) Xét tam giác BHM vuông tại H và tam giác CKM vuông tại K có
MC=MB( vì M là trung điểm của BC)
CMK=BHM( 2 góc đối đỉnh)
=> tam giác BHM= tam giác CKM ( cạnh huyền- góc nhọn)
c) Xét tam giác HMI vuông tại I có HM>HI ( cạnh huyền lớn nhất) (1)
Có tam giác BHM= tam giác CKM ( câu b)
=>HM=MK (2)
Từ (1) và (2) =>MK>HI
d) Có \(\Delta BHM=\Delta CKM\)( theo câu b)
=> BH=KC
Xét tam giác BKC có KC+BK>BC ( bất đẳng thức tam giác) (3)
Thay BH=KC vào (3) ta có BH+BK>BC
Bn ơi đề này sai :
Cho tam giác abc vuông tại a có ab = 8cm , ac = 15cm , bc =15cm , từ ac kẻ ah vuông góc vs bc. So sánh bh và hc.
tam giác abc vuông tại a => góc a = 90 độ
Vì ac = bc => tam giác abc cân tại c .
tam giác abc cân tại c thì 2 góc ở đáy = nhau => góc a = góc b = 90 độ
=> điều này là vô lý
a: Xét ΔABC có AB<AC
mà BH là hình chiếu của AB trên BC
và CH là hình chiếu của AC trên BC
nên HB<HC
Ta có:AB<AC
nên \(\widehat{B}>\widehat{C}\)
hay \(\widehat{BAH}< \widehat{CAH}\)
b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{BDA}+\widehat{HAD}=90^0\)
mà \(\widehat{CAD}=\widehat{HAD}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
hay ΔBDA cân tại B