Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
x O A B C D y
*) Ta có :
OB = OA + AB
OD = OC + CD
Mà OA = OC (gt)
và AB = CD (gt)
=> OB = OD
=> \(\Delta\) OBD cân tại O
=> đpcm
*) Xét \(\Delta\) DAB và \(\Delta\) BCD có:
AB = CD (gt)
\(\widehat{ABD}=\widehat{CDB}\) ( \(\Delta\) OBD cân tại O)
chung BD
=> \(\Delta\) DAB = \(\Delta\) BCD(c-g-c)
=> AD = BC (cặp cạnh tương ứng)
A B C M 30
Ta có : \(\widehat{B}=\widehat{MAB}=30^0\) (gt )
=> \(\Delta ABM\) cân tại M
=> \(\widehat{M}=180^0-30^0+30^0=120^0\)
Ta có : \(\widehat{BAM}+\widehat{MAC}=90^0\)
hay \(30^0+\widehat{MAC}=90^0\)
=> \(\widehat{MAC}=90^0-30^0=60^0\)
tai sao goc BAM + goc MAC=90 do