K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

1) Chứng minh: ΔABD = ΔEBD

Xét  ΔABD và ΔEBD, có:

BD là cạnh huyền chung (gt)

Vậy ΔABD = ΔEBD  (cạnh huyền – góc nhọn)

2) Chứng minh: ΔABE là tam giác đều.

ΔABD = ΔEBD (cmt)

AB = BE

mà  góc B = 60 độ  (gt)

Vậy  ΔABE có  AB = BE và góc 60 độ  nên ΔABE đều.

3) Tính độ dài cạnh BC

Ta có  (gt)

Góc C+B = 90 độ(ΔABC vuông tại A)

Mà BEA = góc B = 60 độ (ΔABE  đều)

Nên góc EAC = góc C ΔAEC cân tại E

EA = EC mà EA = AB = EB = 5cm

Do đó EC = 5cm

Vậy BC = EB + EC = 5cm + 5cm = 10cm

24 tháng 10 2021

1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

 

24 tháng 10 2021

a) Xét ΔABD,ΔEBD có :

BADˆ=BEDˆ(=90độ)

BD:Chung

ABDˆ=EBDˆ(BD là tia phân giác của BˆB^)

=> ΔABD=ΔEBD(cạnh huyền - góc nhọn) (*)

b) Từ (*) suy ra : AB=BE (2 cạnh tương ứng)

=> ΔABE cân tại B

Lại có : ABEˆ=60o (giả thiết)

Do đó : ΔABE là tam giác đều.

24 tháng 10 2021

 bài ca dao đã mượn hình ảnh “bầu và bí”. Đây là hai loại cây khác nhau nhưng có nhưng đặc điểm, môi trường sống giống nhau. Chúng cùng thuộc giống cây thân leo, thường được trồng chung một giàn. Hình ảnh cây bầu, cây bí chung một giànn ta rằng dù chúng có là loài khác nhau đi chăng nữa nhưng vẫn biết chia sẻ không gian, cùng nhau chung sống hòa thuận.

 

10 tháng 3 2020

A B C D E

a, xét tam giác ABD và tam giác EBD có : BD chung

^ABD = ^EBD do BD là pg của ^ABC (gt)

^BAD = ^BED = 90

=> tam giác ABD = tam giác EBD (ch-gn)

b, tam giác ABD = tam giác EBD (Câu a)

=> AB = BE (Đn)

=> tam giác ABE cân tại B (đn)

mà ^ABE = 60 (gt)

=> tam giác ABE đều (dh)

c, tam giác ABC vuông tại A (gt) => ^ACB = 90 - ^ABC  (đl)

^ABC = 60 (Gt)

=> ^ACB = 30 mà tam giác ABC vuông tại A (gt)

=> AB = BC/2

AB = 5 cm (GT)

=> BC = 10 

tam giác ABC vuông tại A (gt) => AB^2 + AC^2 = BC^2

AB = 5; BC = 10

=> AC^2 = 10^2 - 5^2

=> AC^2 = 75

=> AC = \(\sqrt{75}\) do AC > 0

10 tháng 3 2020

A B C D 1 2 E

A)XÉT \(\Delta ABD\)VUÔNG VÀ \(\Delta EBD\)VUÔNG CÓ

         \(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)

   BD LÀ CẠNH CHUNG

\(\Rightarrow\Delta ABD=\Delta EBD\left(CH-GN\right)\)

B) TA CÓ \(\Delta ABD=\Delta EBD\left(CMT\right)\)

\(\Rightarrow AB=EB\)(HAI CẠNH TƯƠNG ỨNG)

NÊN \(\Delta ABE\)CÂN TẠI B

C) XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ

\(\widehat{A}+\widehat{B}+\widehat{C}=180\)

THAY\(\widehat{90}+\widehat{60}+\widehat{C}=180\)

\(\Rightarrow\widehat{C}=30\)

MÀ TRONG TAM GIÁC VUÔNG , CẠNH ĐỐI DIỆN VỚI GÓC 30 ĐỘ BẰNG NỬA CẠNH HUYỀN(Đ/L)

\(\Rightarrow2AB=BC\)

THAY\(2.5=BC=10\left(cm\right)\)

XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ

\(BC^2=AB^2+AC^2\left(Đ/LPY-TA-GO\right)\)

THAY\(10^2=5^2+AC^2\)

       \(100=25+AC^2\)

\(\Rightarrow AC^2=100-25\)

\(\Rightarrow AC^2=75\)

\(\Rightarrow AC=\sqrt{75}=5\sqrt{3}\)

19 tháng 3 2019

a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD 

Suy ra góc ABD = góc EBD 

Vậy tam giác ABD = tam giác EBD 

b) Ta có: AB=EB ( tam giác ABD = tam giác EBD ) 

Suy ra tam giác ABE cân tại B 

Tam giác ABE cân tại B có góc EBA =60 độ 

Suy ra tam giác ABE là tam giác đều 

c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ 

Suy ra ACB = 30 độ 

Suy ra tam giác ABC là nửa tam giác đều  

Suy ra AB = 1/2 BC 

Suy ra BC = 2AB = 2 . 5 = 10 cm

chúc bạn học tốt! smileyyesheartwink

19 tháng 3 2019

d) như phần c nha bn

27 tháng 4 2017

sao không ai trả lời hộ thế

16 tháng 6 2017

a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD

Suy ra góc ABD = góc EBD

Vậy tam giác ABD = tam giác EBD

b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )

Suy ra tam giác ABE cân tại B

Tam giác ABE cân tại B có góc EBA =60 độ

Suy ra tam giác ABE là tam giác đều

c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ

Suy ra ACB = 30 độ

Suy ra tam giác ABC là nửa tam giác đều 

Suy ra AB = 1/2 BC

Suy ra BC = 2AB = 2 . 5 = 10 cm

8 tháng 3 2018

B A C 5 30 30 D E  Vẽ xấu nhưng xem tạm thôi nhé!

a)Xét \(\Delta\)ABD (\(\widehat{A}=90^0\) )và \(\Delta\)EBD (\(\widehat{E}=90^0\))

Ta có:BD là cạnh chung (1)

\(\widehat{ABD}=\widehat{EBD}\) (gt)  (2)

Từ (1) và (2) ==>\(\Delta ABD=\Delta EBD\) (CH+GN)

b)..............hình như tôi ko bt nx ^^

18 tháng 4 2018

Hình bn Hoa vẽ rồi !! mk k vẽ lại nữa

a ) Phương Hoa lm rồi

b) Vì tam giác ABD = tam giác EBD ( câu a )

=> AB = EB ( cặp cạnh tượng ứng ) 

=> tam giác ABE cân (1)

Mà góc ABE = 60 độ    (2)

Từ (1) và (2) => tam giác ABE đều ( điều phải chứng minh )

c) Xét tam giác ABK và tam giác EBK có :

BD : cạnh chung

AB = BE ( vì tam giác ABE đều )

góc ABK = góc EBK = 30 độ ( vì BK là phân giác )

=> tam giác ABK = tam giác EBK ( c-g-c )

=> AK = EK ( cặp cạnh tương ứng )

Mà tam giác ABE đều => AB = EB = AE 

=> AB = EB = AE = 5cm

mà AK + EK = AE

=> AK = AE = 2,5 cm

Mà AK = EC 

=> AK = EC = 2,5cm

Vì BE + CE = BC 

=> 5 + 2,5 = BC 

=> BC = 7,5 cm 

Chúc bn học tốt !!!

9 tháng 3 2018

(Bạn tự vẽ hình giùm)

1/ \(\Delta ABD\)vuông và \(\Delta EBD\)vuông có: \(\widehat{ABD}=\widehat{EBD}\)(AD là tia phân giác góc A)

Cạnh huyền BD chung

=> \(\Delta ABD\)vuông = \(\Delta EBD\)vuông (cạnh huyền - góc nhọn) (đpcm)

2/ Ta có \(\Delta ABD\)\(\Delta EBD\)(cm câu 1) => AB = EB (hai cạnh tương ứng) => \(\Delta AEB\)cân tại B

và \(\widehat{B}=60^o\)=> \(\Delta AEB\)đều (đpcm)

_Hình tự vẽ_

a,vì tam giác ABC vuông tại A =>góc A=90 độ và góc B=60 độ(gt)

    áp dụng định lí tổng 3 góc trong 1 tam giác :<A+<B+<C=180 độ

                                                                           =><C= 180 -90-60=30(độ)

                                                        hay <ACB=30 độ

b, Xét tam giác ABD và EBD có:

              BD-cạnh chung

               <ABD=<DBE(vì bd phân giác <B)

 => tam giác ABD=tam giác EBD (ch-gn)

c,(tự làm)

d,(hình như đề sai cạu ạk)-(đề ko cho cạnh AC bằng b.nhiêu)

   

3 tháng 3 2020

2 câu đầu mk bik lm ròi m nhờ mn lm 2 câu cuối mà