\(60^0\). Vẽ AH\(\perp\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=4cm

b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có

AM chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔAMN

Suy ra: MH=MN; AH=AN

hay AM là đường trung trực của NH

c: Xét ΔAHN có AH=AN

nên ΔAHN cân tại A

mà \(\widehat{HAN}=60^0\)

nên ΔAHN đều

A C H M N O 1 2 B D

                                                                            Giải:

Xét tam giác vuông AHM và ANM có:

\(\Delta AHM\perpởH;\Delta ANM\perpởN\)

cạnh huyền AM chung

góc nhọn \(\widehat{A_1}=\widehat{A_2}\)

=> tam giác AHM = tam giác ANM ( cạnh huyền-góc nhọn)

=> AH=AN

=> Tam giác AHN cân tại A                    (1)

Tam giác ABH có \(\widehat{AHB}=90^o\)\(\widehat{B}+\widehat{BAH}+\widehat{AHB}=180^o\), mà \(\widehat{B}=60^o;\widehat{AHB}=90^o\)

\(\Rightarrow\widehat{BAH}=30^o\)

Mà: \(\widehat{BAC}=90^o\Rightarrow\widehat{HAN}=\widehat{BAC}-\widehat{BAH}=90^o-30^o=60^o\)(2)

Từ (1) và (2) => tam giác AHN đều

b, Gọi O là giao điểm của AM và HN

Xét tam giác AHO và ANO có:

AH=AN

\(\widehat{A_1}=\widehat{A_2}\)

AO chung

=> tam giác AHO = tam giác ANO (c.g.c)

=> HO=NO

=> O là trung điểm HN        (1)

Ta có: tam giác AHO = tam giác ANO (chứng minh trên)

=>\(\widehat{AOH}=\widehat{AON}\), mà \(\widehat{AOH}+\widehat{AON}=180^o\)

\(\Rightarrow\widehat{AOH}=\widehat{AON}=90^ohayAO\perp HN\) (2)

Từ (1) và (2) => AO là đường trung trực của HN

=> AM là đường trung trực của HN

c, chưa ra

21 tháng 6 2019

H B A C N M D 1 2

CM: a) Xét t/giác AHM và t/giác ANM

có : \(\widehat{AHM}=\widehat{ANM}=90^0\) (gt)

       AM : chung

       \(\widehat{A_1}=\widehat{A_2}\) (gt)

=> t/giác AHM = t/giác ANM (ch - gn)

=> AH = AN (2 cạnh t/ứng)

=> t/giác AHN cân tại A (1)

Xét t/giác ABC có \(\widehat{A}\) = 900 => \(\widehat{ABC}+\widehat{C}\)= 900

Xét t/giác AHC có \(\widehat{AHC}=90^0\) => \(\widehat{HAC}+\widehat{C}=90^0\)

=> \(\widehat{ABC}=\widehat{HAC}\)

Mà \(\widehat{ABC}=60^0\) => \(\widehat{HAC}=60^0\) (hay \(\widehat{HAN}=60^0\))                    (2)

Từ (1) và (2) => t/giác AHN là t/giác đều

b) Ta có: t/giác AHM = t/giác ANM (cmt)

=> HM = MN (2 cạnh t/ứng)

=> M \(\in\)đường trung trực của HN

Ta lại có: AH = AN (cmt)

=> A \(\in\)đường trung trực của HN

mà A \(\ne\) M => AM là đường trung trực của HN

c) Do \(\widehat{DHA}\)là góc ngoài của t/giác AHN 

=> \(\widehat{DHA}=\widehat{HAN}+\widehat{ANH}=2.60^0=120^0\) (t/giác AHN là t/giác đều => góc HAN = góc AHN = góc HNA = 600)

Ta có: \(\widehat{DAH}+\widehat{HAC}=90^0\) => \(\widehat{DAH}=90^0-\widehat{HAC}=90^0-60^0=30^0\) (3)

Xét t/giác AHD có : \(\widehat{ADH}+\widehat{AHD}+\widehat{DAH}=180^0\) (tổng 3 góc của 1 t/giác)

=> \(\widehat{HDA}=180^0-\widehat{DHA}-\widehat{DAH}=180^0-120^0-30^0=30\)(4)

Từ (3) và (4) => \(\widehat{HDA}=\widehat{DAH}=30^0\) => t/giác AHD cân tại H => DH = AH

                                                                                       mà AH = HN (vì t/giác AHN là t/giác đều)

 => DH = HN => AH là trung tuyến của t/giác AND

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
15 tháng 11 2019

Tham khảo

Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath

15 tháng 11 2019

mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

11 tháng 12 2019

A B H K I D m C ( (

GT

△ABC: AB = AC, Am ∩ BC = {D} ; BAD = DAC = BAC/2 . HD ⊥ AB. DK ⊥ AC. BAC = 4B

KL

 1, AD ⊥ BC ; DB = DC

 2, DH = DK ; AD là đường trung trực HK.

 3. BAD = ?

Bg:

1, Xét △BAD và △CAD

Có: AB = AC (gt)

    BAD = DAC (gt)

   AD là cạnh chung

=> △BAD = △CAD (c.g.c)

=> ADB = CDA (2 góc tương ứng)

Ta có: ADB + CDA = 180o (2 góc kề bù)

=> ADB = CDA = 180o/2 = 90o

=> AD ⊥ BC

 Vì △BAD = △CAD (cmt)

=> DB = CD (2 cạnh tương ứng)

Mà D nằm giữa B, C

=> D là trung điểm của BC

2, Xét △HAD vuông tại H và △KAD vuông tại K

Có: AD là cạnh chung

       HAD = DAK (gt)

=> △HAD = △KAD (ch-gn)

=> DH = DK (2 cạnh tương ứng)  

và AH = AK (2 cạnh tương ứng)   

=> A và D cách đều 2 mút H, K của đoạn thẳng HK

=> A, D nằm trên đường trung trực của đoạn thẳng HK hay AD là đường trung trực của đoạn thẳng HK (định lí 2)

3, Vì Am là tia phân giác của BAC

=> 2BAD = 2DAC = BAC = 4B

Ta có: BAC = 4B => BAC/4 = B

Xét △BAD vuông tại D 

Có: BAD + ABD = 90o (tổng 2 góc nhọn trong tam giác vuông)

\(\Rightarrow\widehat{BAD}+\frac{\widehat{BAC}}{4}=90^o\)\(\Rightarrow\widehat{BAD}+\frac{2\widehat{BAD}}{4}=90^o\)\(\Rightarrow\widehat{BAD}+\frac{\widehat{BAD}}{2}=90^o\)\(\Rightarrow\widehat{BAD}\left(1+\frac{1}{2}\right)=90^o\)\(\Rightarrow\widehat{BAD}.\frac{3}{2}=90^o\)\(\Rightarrow\widehat{BAD}=60^o\)

3 tháng 4 2018

Đua nào giai đi tao

21 tháng 4 2018

tui ko biết bài này

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v