K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

tam giác ABC vuông tại A (gt) có ^B = 30 (gt)

=> AC = 1/2BC (Đl)

tam giác ABC vuông tại A (gt) => AB^2 + AC^2 = BC^2

AB = a (gt)

=> a^2 + (1/2BC)^2 = BC^2

=> a^2 = BC^2 - 1/4BC^2

=> a^2 = 3/4BC^2

=> BC^2 = a^2 : 3/4

=> BC^2 = 4/3a^2

=> BC = \(\sqrt{\frac{4}{3}a}\)

=> AC = \(\frac{\sqrt{\frac{4}{3}a}}{2}\)

2 tháng 4 2020

Nguyễn Ái Minh bạn phải từng học 1 định  lí : trong 1 tam giác vuông mà có 1 góc =30o =>cạnh cgv đối diện với cạnh tạo nên góc = 30o sẽ = 1/2 cạnh huyền.

nếu k cm sẽ rất dài :)

HÌnh tự vẽ nha 

đây là kiến thức lớp 9 nha 

\(\tan B=\frac{AC}{AB}\Rightarrow AC=\tan B.AB=\tan B.a=...\)

\(\cos B=\frac{AC}{BC}\Rightarrow BC=AC:\cos C=a:\cos C=.....\)

Có kết quả thì thay vào a rồi tính kết quả ra 

14 tháng 9 2019

Bạn có thể nào giải bài toán theo cách của lớp 7 hem ???

22 tháng 11 2016

Bài 4:

Gọi M là giao điểm của EF với BC, N là giao điểm của DF với AB, ta có:
Ta có: DF vuông góc với AH
BC vuông góc với AH
DF song song với BC (hay BM)   (2 góc trong cùng phía)
Mà  là góc ngoài của  nên 
 
 
 AB song song với MF (hay EF) (vì có 2 góc đồng vị bằng nhau) (1)
  (2 góc so le trong)

Xét  và  có:
 
AH = DE (vì AD +DH = DH + HE)
 (ch/minh trên)
  (cạnh góc vuông - góc nhọn)  DF = BH (2 cạnh tương ứng)
Xét  và  có:

HE = AD (gt)
BH = DF (ch/minh trên)

  (2 cạnh góc vuông)   (2 góc tương ứng)
 BE song song với AF (hay AC) (vì có 2 góc so le trong bằng nhau) (2)
Mặt khác:   BA vuông góc với AC (3)
Từ (1), (2) và (3) suy ra: BE vuông góc với EF (đpcm)

14 tháng 3 2020

ccccccccccccccccccccccccccccccccccccccc

29 tháng 4 2020

Mình làm mẫu cho bạn câu a) nhé 

a) Theo định lí Pytago ta có :

BC2 = AB2 + AC2 

152 = AB2 + AC2

AB : AC = 3:4

=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)

\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)

\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)

Ý b) tương tự nhé 

10 tháng 2 2022

thank you

 

21 tháng 3 2019

a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD 

Suy ra góc ABD = góc EBD 

Vậy tam giác ABD = tam giác EBD 

b) Ta có: AB=EB ( tam giác ABD = tam giác EBD ) 

Suy ra tam giác ABE cân tại B 

Tam giác ABE cân tại B có góc EBA =60 độ 

Suy ra tam giác ABE là tam giác đều 

c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ 

Suy ra ACB = 30 độ 

Suy ra tam giác ABC là nửa tam giác đều  

Suy ra AB = 1/2 BC 

Suy ra BC = 2AB = 2 . 5 = 10 cm

-Tham khảo-

21 tháng 3 2019

a,  Xét tam giác ABD và tam giác EBD có :

BD chung

góc ABD = góc EBD ( vì BD là phân giác của ABC)

=> tam giác ABD=tam giác EBD ( cạnh huyền-góc nhọn)

b, Vì tam giác ABD= tam giác EBD (  câu a)

=> AB=EB

Xét tam giác ABE có :

AB=EB

=> Tam giác ABE cân tại B

Xét tam giác ABE cân tại B có :

ABE =60 độ( vì góc ABC=60 độ)

=> Tan giác ABE đều

c, Xét tam giác ABC vuông tai jS có :

góc ABC =60 độ ( giả thiết), góc BAC= 90 độ( Vì tam giác ABC vuông tại A)

=> góc C = 30 độ

Mà trong tam giác vuông , cạnh đối diện với góc 30 độ bằng nửa cạnh huền

=> 2AB = BC . Mà AB = 5 ( giả thiết)

=> BC =10

Áp dụng định lý PYTAGO vào tam giác ABC vuông tại A có :

 BC^2 = AB^2 + AC^2 . Mà AB = 5 , BC =10

=> 10^2 = 5^2 + AC^2

=> 100=25 + AC^2

=> AC^2 = 75 

=> AC = căn bậc 2 của 75 ( Vì mình ko đánh dấu căn bậc 2 được nên đành phải viết)

8 tháng 6 2020

hình tự kẻ nghen:333

a) Xét tam giác ABD và tam giác EBD có

B1=B2( gt)

BD chung

BAD=BED(=90 độ)

=> tam giác ABD= tam giác EBD( ch-gnh)

b) từ tam giác ABD= tam giác EBD=> AB=EB( hai cạnh tương ứng)

=> tam giác ABE cân B mà ABC= 60 độ=> ABE đều

c) vì ABE đều=> BAE= 60 độ, AB=EB=AE

ta có BAC= BAE+EAC=90 độ

=> EAC=90-60=30 độ

vì tam giác ABC vuông tại A và có ABC=60 độ

=> ACB= 30 độ

=> ACB=EAC=> tam giác EAC cân E=> AE=EC=> AE=EC=EB=AB

ta có BC= BE+EC=> BC= 5cm+5cm=10cm

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

8 tháng 4 2017

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

8 tháng 4 2017

uhuhuhu sợ bài này lắm rồi !