K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔABD=ΔEBD

b: ta có: ΔABD=ΔEBD

nên BA=BE

=>ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔBAE đều

9 tháng 5 2022

a)  Xét ∆ABD và ∆EBD ta có :

BD chung

góc BAD = góc BED ( = 90 độ)

góc ABD = góc EBD ( gt)

=> ∆ABD=∆EBD  ( ch-gn)

b) Xét tam giác vuông ABC ta có :

Góc A = 90 độ, góc C = 30 độ

Mà góc A + góc C + góc B = 180 độ

=> góc B = 180 - 90 - 30 = 60 độ (1)

Xét tam giác ABE ta có :

BA = BE ( vì  ∆ABD=∆EBD) => tam giác ABE cân tại B

Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )

 

a)  Xét `∆ABD` và `∆EBD` ta có :

`BD` chung

`hat (BAD) = hat (BED) ( = 90^o)`

`hat(ABD) = hat (EBD)`

`=> ∆ABD=∆EBD  ( ch-gn)`

b) Xét tam giác vuông `ABC` ta có :

`Hat A = 90 độ, hatC = 30 độ`

Mà `hat (A) + hat (C) + hat (B) = 180^o`

`=> hat(B) = 180 - 90 - 30 = 60 độ (1)`

Xét tam giác ABE ta có :

`BA = BE ( vì  ∆ABD=∆EBD) =>` ` triangle ABE `cân tại B

Mà `hat(B)= 60 độ => triangle ABC` là tam giác đều

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: Xét ΔBAE có BA=BE và góc ABE=60 độ

nên ΔBAE đều

c: Xét ΔDBC có góc DBC=góc DCB

nên ΔDBC cân tại D

11 tháng 3 2021

v     b  bghghfg fhghfhghfg

10 tháng 9 2017

TÔI LÀ THẦY GIÁO DẠY MÔN VĂN VÀ TOÁN. SAO KO VIẾT CHỦ NGỮ VÀO, CÓ THÍCH TÔI TRẢ LỜI KO?

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>BA=BE

mà góc ABE=60 độ

nên ΔBAE đều

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED
=>BA=BE

Xét ΔBAE có BA=BE và góc ABE=60 độ

nên ΔBAE đều

c; Xét ΔABC vuông tại A có cos B=AB/BC

=>5/BC=1/2

=>BC=10cm

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: Xét ΔABE có BA=BE

nên ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔBAE đều