K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

hình tự ve nha]

xét tam giác ABH vuông tại H có:

AB2= AH2+BH2​(định lý py- ta-go)

thay số:AB=13cm, AH=12cm, được:

132=122+BH2

169=144+BH2

BH2=169-144

BH2=25

suy ra: BH=5cm

xét tam giác AHC vuông tại H có

AC2=AH2+HC2(dinh ly py ta go)

​thay số: tu thay nha

tự tìm như ở câu trên ý

suy ra AC=20cm

có BC =BH+HC=5+16=21cm

chu vi hình tam giác ABC là:

13+21=20=54(cm)

k cho minh nha

thanks

19 tháng 1 2017

54 cm 

k cho mk nha

20 tháng 12 2020

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15cm

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20cm

Vậy: AB=15cm; AC=20cm

Ta có: BH+CH=BC(H nằm giữa B và C)

hay BC=9+16=25cm

Ta có: \(AB^2+AC^2=15^2+20^2=625\)

\(BC^2=25^2=625\)

Do đó: \(BC^2=AB^2+AC^2\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

30 tháng 1 2018

a)   Ta có:     \(20^2+48^2=2704\)

                     \(52^2=2704\)

suy ra:    \(AB^2+AC^2=BC^2\)

Vậy    \(\Delta ABC\)vuông tại   \(A\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAHM=ΔAHN

Suy ra: AM=AN

hay ΔAMN cân tại A

c: Ta có: AM=AN

HM=HN

Do đó: AH là đường trung trực của MN

hay AH⊥MN

8 tháng 4 2022

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

cạnh AH chung

AB=AC(vì tam giác ABC cân tại A)

=> ΔAHB=ΔAHC(c.h-c.g.v)

 Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

\(\widehat{HAM}=\widehat{HAN}\)

cạnh AH chung

==> ΔAHM=ΔAHN(c.h-g.n)

==> AM=AN

=> ΔAMN cân tại A ( dấu hiệu)

 

c)Ta có:HM=HN   ;  AM=AN

===>AH là đường trung trực của MN

=>\(\text{AH⊥MN}\)

A B C H 20 12 5

a, Áp dụng định lí Pytago trong tam giác \(AHB\)có \(\widehat{H}=90^0\)ta có :

\(HA^2+HB^2=AB^2\)

\(AB^2=12^2+5^2=144+25=169\)

\(AB=\sqrt{169}=13cm\)

Áp dụng định lí Pytago trong tam giác \(AHC\)có \(\widehat{H}=90^0\)ta có :

\(HA^2+HC^2=AC^2\)

\(HC^2=AC^2-HA^2\)

\(HC^2=20^2-12^2\)

\(HC^2=400-144=256\)

\(HC=\sqrt{256}=16cm\)

\(H\in BC\)

\(\Rightarrow HB+HC=BC\)

hay \(BC=5+16=21cm\)

b, Chu vi tam giác ABC = \(20+21+13=54cm\)

19 tháng 3 2022

a, Theo định lí Pytago tam giác AHB vuông tại H

\(AB=\sqrt{AH^2+HB^2}=13cm\)

Theo định lí Pytago tam giác ẠHC vuông tại H

\(HC=\sqrt{AC^2-AH^2}=16cm\)

-> BC = HB + HC = 5 + 16 = 21 cm 

b, Chu vi tam giác ABC là \(P_{ABC}=AC+AB+BC=21+13+20=54cm\)