Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABE và ΔCKE có
EB=EK(gt)
\(\widehat{AEB}=\widehat{CEK}\)(hai góc đối đỉnh)
EA=EC(E là trung điểm của AC)
Do đó: ΔABE=ΔCKE(c-g-c)
b) Xét ΔAME vuông tại M và ΔCNE vuông tại N có
EA=EC(E là trung điểm của AC)
\(\widehat{AEM}=\widehat{CEN}\)(hai góc đối đỉnh)
Do đó: ΔAME=ΔCNE(Cạnh huyền-góc nhọn)
Suy ra: AM=CN(hai cạnh tương ứng)
a/Xét tg ABE và tg CKE có:
EB=EK ( gt)
góc BEA=góc KEC(đối đỉnh)
AE=EC(BE trung tuyến AC =>E trung điểm AC)
=> Tg ABE=tg CKE( c.g.c)
b/ Xét tg AME ( vuông tại M) và tg CNE ( vuông tại N) có:
AE=EC(cmt)
góc BEA=góc KEC
=> Tg AME= tg CNE( ch-gn)
=> AM=CN ( hai cạnh tương ứng)
c/ Trong tg BCK có:
BC+CK > BK ( BĐT tg)
=> BC+CK > 2BE
Mà CK=AB( tg ABE=tg CKE)
=> AB+BC > 2BE
=> \(\frac{AB+BC}{2}>BE\)
d/ mk` ko giải được.
a) tam giác ABC cân tại A nên hai góc ABC= ACB
Ta có: góc ABM= 180 độ - góc ABC ( kề bù )
góc ACN= 180 độ - ACB ( kề bù )
Vậy góc ABM= góc ACN
Xét tam giác ABM và tg ACN có:
AB=AC ( tg ABC cân tại A )
góc ABM= góc ACN ( cmt )
BM=CN(gt)
=> tg ABM= tg ACN ( c-g-c)
=> AM=AN( 2 cạnh tương ứng )
=> tg AMN cân tại A
b) Vì tg AMN cân tại A nên góc AMN= góc ANM
Xét tg HBM và tg KCN có:
góc MHB= góc NKC( = 90 độ )
BM=CN ( gt)
góc AMN= góc ANM ( tg AMN cân tại A)
=> tg HBM= tg KCN ( cạnh huyền - góc nhọn )
=> BH= CK ( 2 cạnh tương ứng )
c) Vì tg HBM = tg KCN nên => HM= KN ( 2 cạnh tương ứng )
Lại có: HM+HA= AM; KN+KA= AN
Vì AM= AN ( tg AMN cân tại A )
HM= HN
=> AH= AK
d) tg ABM = tg CKN => góc HBM = góc KCN
góc CBO = góc HBM và góc KCN= góc BCO ( đối đỉnh )
=> tg OBC cân tại O
e) Khi góc BAc = 60 độ => tg ABC đều
=> BM = AB
=> tg ABM cân tại B
Ta có : góc AMB = 1212 . ABC = 12.6012.60 = 30 độ
góc A= 180 độ - 30 độ - 30 độ = 120 độ
góc KCN = góc BCO = 60 độ
a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC(ΔBAC cân tại A)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
BM=CN(gt)
Do đó: ΔABM=ΔACN(C-g-c)
Suy ra: AM=AN(Hai cạnh tương ứng)
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó:ΔBME=ΔCNF
a)ta có AB=AC
=)TAM giác ABC cân tại A
=)Góc B2=góc C1
Lại có B1+B2=180độ(kề bù)
C1+C2=180độ(kề bù)
mà B2=C1(cmt)
=)B1=C2
Xét tam giác ABM và tam giác ACN có
BM=CN(GT)
B1=C2(CMT)
AB=AC(GT)
=)TAM giác ABM = tam giác ACN (c-g-c)
=)AM=AN(2 cạnh tương ứng )
bạn tự viết kí hiệu nhá mik ko bít cách viết
a: Xét ΔEAB và ΔECF có
EA=EC
góc AEB=góc CEF
EB=EF
=>ΔEAB=ΔECF
b: ΔEAB=ΔECF
=>AB=CF<BC
c: góc EBA=góc EFC
góc EFC>góc EBC
=>góc EBA>góc EBC
A B C M N E 1 2
a) Xét t/giác ABC vuông tại A có góc B = 600 => góc C = 900 - 600 = 300
Ta có: \(\widehat{B1}=\widehat{B2}=\widehat{\frac{B}{2}}=\frac{60^0}{2}=30^0\)
=> \(\widehat{C}=\widehat{B2}\) = >t/giác BEC cân tại E => EB = EC
b) Trên tia đối của tia AB lấy điểm M sao cho AM = AB
Xét t/giác ABC và t/giác AMC
có: AB = AM
\(\widehat{BAC}=\widehat{MAC}=90^0\) (gt)
AC : chung
=> t/giác ABC = t/giác AMC (c.g.c)
=> BC = CM (2 cạnh t/ứng)
=> t/giác ACM cân tại C có \(\widehat{B}=60^0\)
=> t/giác ACM đều
=> BC = CM = BM
Mà BM = AB + AM = 2AB (AB = AM)
=> BC = 2AB => AB = 1/2BC
c) Xét t/giác ABC vuông tại A có AN là đường trung tuyến
=> AM = BN = NC = 1/2BC
=> t/giác ANC cân tại N
=> AN = NC