Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Kẻ DK\(\perp\)BC
Xét ΔBAD vuông tại A và ΔBKD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔBAD=ΔBKD
=>BA=BK
mà \(BA=\dfrac{1}{2}BC\)
nên \(BK=\dfrac{1}{2}CB\)
=>K là trung điểm của BC
Xét ΔDBC có
DK là đường cao
DK là đường trung tuyến
Do đó: ΔDBC cân tại D
b: ΔDBC cân tại D
=>\(\widehat{DBC}=\widehat{DCB}\)
mà \(\widehat{DBC}=\dfrac{1}{2}\cdot\widehat{ABC}\)
nên \(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\dfrac{1}{2}\cdot\widehat{ABC}+\widehat{ABC}=90^0\)
=>\(\dfrac{3}{2}\cdot\widehat{ABC}=90^0\)
=>\(\widehat{ABC}=90^0:\dfrac{3}{2}=90^0\cdot\dfrac{2}{3}=60^0\)
\(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}=\dfrac{1}{2}\cdot60^0=30^0\)
B C A E 1 2
a) Xét tam giác vuông ABC
Có \(AC=2AB\Rightarrow\widehat{BCA}=\frac{1}{2}\widehat{BAC}\)
Mà \(\widehat{A_1}=\widehat{A_2}=\frac{1}{2}\widehat{BAC}\) (AE là phân giác của góc A)
\(\Rightarrow\widehat{A_2}=\widehat{BCA}\)
\(\Rightarrow EA=EC\)
b) Ta có: \(\widehat{BAC}+\widehat{BCA}=90^0\) (vì \(\Delta ABC\) vuông tại B)
Mà \(\widehat{A_2}=\widehat{BCA}=\frac{1}{2}\widehat{BAC}\)
\(\Rightarrow\widehat{BCA}=\frac{1}{3}\left(\widehat{BAC}+\widehat{BCA}\right)=\frac{1}{3}.90^0=30^0\)
\(\Rightarrow\widehat{BAC}=90^0-30^0=60^0\)
Vậy ......
Đây là bài làm của mình : ( ko có hình vì mk ko biết vẽ hình )
Gọi D là trung điểm của AC
=> AD = DC = AB
Xét tam giác ABE và tam giác ADE , có :
AB = AD
A1 = A2
AE chung
=> tam giác ABE = tam giác ADE ( c.g.c )
=> BE = ED => góc ABF = góc ADE = 90o ( 2 góc tương ứng )
=> góc ADE = góc CDE
Xét tam giác ADE và tam giác CDE ta có :
AD = DC
góc ADE = góc CDE
DE chung
=> tam giác ADE = tam giác CDE
=> AE = EC
b, Vì tam giác AED = tam giác CED
=> A2 = C ( 2 góc tương ứng )
=> góc C = \(\frac{1}{2}\)góc A
=> A + C = 90o
Vì C = \(\frac{1}{2}\)A = > A = 60o
C = 30o
-Áp dụng tính chất sau: Trong một tam giác vuông, nếu có một cạnh góc vuông bằng nửa cạnh huyền thì góc đối diện với cạnh góc vuông đó bằng \(30^o\)
\(\Delta ABC\) vuông tại \(A\) có \(BC=2AB\Rightarrow\widehat{C}=30^o\)
Khi đó: \(\widehat{B}=180^o-\left(\widehat{A}+\widehat{C}\right)=180^o-\left(90^o+30^o\right)=60^o\)