Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét tg ABC và tg MDC có: BAC=DMC=90, ^C chung
=>tg ABC đ.dạng vs tg MDC(g.g)
b)xét tg ABC và tg MBI có: CAB=BMI=90, ^B chung
=>tg ABC đ.dạng vs tg MBI(g.g) =>AB/MB=BC/BI=>AB.BI=BM.BC(đpcm)
a) Xét \(\Delta ABC\)và \(\Delta MDC\)
Ta có: \(\widehat{BAC}=\widehat{DMC}=90^o\)
\(\widehat{C}\)là góc chung
\(\Rightarrow\Delta ABC~\Delta MDC\left(g-g\right)\)
b) Xét \(\Delta BIM\)và \(\Delta BCA\)
Ta có: \(\widehat{IMB}=\widehat{CAB}=90^o\)
\(\widehat{B}\) là góc chung
\(\Rightarrow\Delta BIM~\Delta BCA\left(g-g\right)\)
\(\Rightarrow\frac{BI}{BC}=\frac{BM}{BA}\)
\(\Rightarrow BI\text{.}BA=BM.BC\)
C H I B D A
a) Xét ΔCDH vuông tại D và ΔBAH vuông tại A có
\(\widehat{CHD}=\widehat{BHA}\)(hai góc đối đỉnh)
Do đó: ΔCDH\(\sim\)ΔBAH(g-g)
Suy ra: \(\dfrac{HD}{HA}=\dfrac{HC}{HB}\)
hay \(HB\cdot HD=HA\cdot HC\)
b) Ta có: \(\dfrac{HD}{HA}=\dfrac{HC}{HB}\)(cmt)
nên \(\dfrac{HD}{HC}=\dfrac{HA}{HB}\)
Xét ΔADH và ΔBCH có
\(\dfrac{HD}{HC}=\dfrac{HA}{HB}\)(cmt)
\(\widehat{AHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔADH\(\sim\)ΔBCH(c-g-c)