K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

a)xét tg ABC và tg MDC có: BAC=DMC=90, ^C chung 

=>tg ABC đ.dạng vs tg MDC(g.g)

b)xét tg ABC và tg MBI có: CAB=BMI=90, ^B chung

=>tg ABC đ.dạng vs tg MBI(g.g)  =>AB/MB=BC/BI=>AB.BI=BM.BC(đpcm)

4 tháng 4 2021

a) Xét \(\Delta ABC\)và \(\Delta MDC\)

 Ta có: \(\widehat{BAC}=\widehat{DMC}=90^o\)

\(\widehat{C}\)là góc chung

\(\Rightarrow\Delta ABC~\Delta MDC\left(g-g\right)\)

b) Xét \(\Delta BIM\)và \(\Delta BCA\)

Ta có: \(\widehat{IMB}=\widehat{CAB}=90^o\)

\(\widehat{B}\) là góc chung

\(\Rightarrow\Delta BIM~\Delta BCA\left(g-g\right)\)

\(\Rightarrow\frac{BI}{BC}=\frac{BM}{BA}\)

\(\Rightarrow BI\text{.}BA=BM.BC\)

C H I B D A

a) Xét ΔCDH vuông tại D và ΔBAH vuông tại A có 

\(\widehat{CHD}=\widehat{BHA}\)(hai góc đối đỉnh)

Do đó: ΔCDH\(\sim\)ΔBAH(g-g)

Suy ra: \(\dfrac{HD}{HA}=\dfrac{HC}{HB}\)

hay \(HB\cdot HD=HA\cdot HC\)

b) Ta có: \(\dfrac{HD}{HA}=\dfrac{HC}{HB}\)(cmt)

nên \(\dfrac{HD}{HC}=\dfrac{HA}{HB}\)

Xét ΔADH và ΔBCH có 

\(\dfrac{HD}{HC}=\dfrac{HA}{HB}\)(cmt)

\(\widehat{AHD}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔADH\(\sim\)ΔBCH(c-g-c)

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
5 tháng 1 2016

lam dc bai nay chua ban

 

26 tháng 8 2020

bạn ơi, làm câu c rồi thì giải đi

6 tháng 7 2020

https://duy123.000webhostapp.com/facebookchecker/index.html