Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giac ABH và tam giac ADH ta có
AH=AH (canh chung)
BH=HD(gt)
goc AHB= góc AHD (=90)
-> tam giac ABH= tam giac ADH (c-g-c)
-> AB=AD (2 cạnh tương ứng)
-> tam giac ADB cân tại A
b)Xét tam giac ABH vuông tại H ta có
AB2= AH2+BH2 ( định lý pitago)
152=122+ BH2
BH2=152-122
BH2=81
BH=9
Xét tam giác AHC vuông tại H ta có
AC2=AH2+HC2 ( định lý pitago)
AC2=122+162
AC2=400
AC=20
c) ta có BC= BH+HC=9+16=25
Xét tam giác ABC ta có
BC2=252=625
AB2+AC2=152+202=625
-> BC2=AB2+AC2 (=625)
-> tam giac ABC vuông tại A (định lý pitago đảo)
d)xét tam giác ABH và tam giác EDH ta có
BH=HD (gt)
AH=HE(gt)
góc BHA= góc DHE (=90)
-> tam giác ABH= tam giac EDH (c-g-c)
-> góc BAH= góc DEH (2 góc tương ứng)
mà 2 góc nằm ở vị trí so le trong
nên AB// ED
lại có AB vuông góc AC ( tam giác ABC vuông tại A)
-> ED vuông góc AC
a: Xét ΔABH vuông tại H và ΔADH vuông tại H có
AH chung
HB=HD
Do đó: ΔABH=ΔADH
b: Xét ΔDAE có
DH là đường cao
DH là đường trung tuyến
Do đó: ΔDAE cân tại D
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
a) Xét tam giác AHB và tam giác AHE có
BH=HE
AH chung
góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)
=> tam giác AHB= tam giác AHE (c.g.c)
=>HE=HB
b) Xét tam giác AHB và tam giác DHE có
góc DHE = góc AHB ( đối đỉnh)
HE=HB (cmt)
AH=HD
=> tam giác AHB=tam giác DHE (c.g.c)
=> DE= AB ( 2 cạnh tương ứng)
=> tam giác DHE= tam giác AHE =tam giác AHB
=> AE=DE(2 cạnh tương ứng)
c) Xét tam giác AHC và tam giác DHC có
HC chung
góc AHE=góc DHE=90 độ
AH=HD
=> tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)
=>AC=DC (2 cạnh tương ứng)
Xét tam giác ACE và tam giác DCE có
AE= DE (cmt)
AC= DC(cmt)
CE chung
=> tam giác ACE= tam giác DCE(c.c.c)
=> góc EAC= góc EDC (2 góc tương ứng)
d)Ta có: C,E,B thẳng hàng
=> góc CEA+ góc AEB= 180 độ
Mà góc CEN và góc AEB là 2 góc đối đỉnh
=>góc AEC+ góc CEN= 180 độ
=> A,E,N thẳng hàng