K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2016

a) xét tam giac ABH và tam giac ADH ta có

AH=AH (canh chung)

BH=HD(gt)

goc AHB= góc AHD (=90)

-> tam giac ABH= tam giac ADH (c-g-c)

-> AB=AD (2 cạnh tương ứng)

-> tam giac ADB cân tại A

b)Xét tam giac ABH vuông tại H ta có

AB2= AH2+BH2 ( định lý pitago)

152=122+ BH2

BH2=152-122

BH2=81

BH=9

Xét tam giác AHC vuông tại H ta có

AC2=AH2+HC2 ( định lý pitago)

AC2=122+162

AC2=400

AC=20

c) ta có BC= BH+HC=9+16=25

Xét tam giác ABC ta có

BC2=252=625

AB2+AC2=152+202=625

-> BC2=AB2+AC2 (=625)

-> tam giac ABC vuông tại A (định lý pitago đảo)

d)xét tam giác ABH và tam giác EDH ta có

BH=HD (gt)

AH=HE(gt)

góc BHA= góc DHE (=90)

-> tam giác ABH= tam giac EDH (c-g-c)

-> góc BAH= góc DEH (2 góc tương ứng)

mà 2 góc nằm ở vị trí so le trong 

nên AB// ED

lại có AB vuông góc AC ( tam giác ABC vuông tại A)

-> ED vuông góc AC

28 tháng 4 2016

mày ngu như chó

a: Xét ΔABH vuông tại H và ΔADH vuông tại H có 

AH chung

HB=HD

Do đó: ΔABH=ΔADH

b: Xét ΔDAE có 

DH là đường cao

DH là đường trung tuyến

Do đó: ΔDAE cân tại D

28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

2 tháng 1 2022

a) Xét tam giác AHB và tam giác AHE có

  BH=HE

  AH chung

  góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)

  => tam giác AHB= tam giác AHE (c.g.c)

  =>HE=HB

b) Xét tam giác AHB và tam giác DHE có

   góc DHE = góc AHB ( đối  đỉnh)

   HE=HB (cmt)

   AH=HD

 => tam giác AHB=tam giác DHE (c.g.c)

 => DE= AB ( 2 cạnh tương ứng)

=> tam giác DHE= tam giác AHE =tam giác AHB

=> AE=DE(2 cạnh tương ứng)

c) Xét tam giác AHC và tam giác DHC có

  HC chung

  góc AHE=góc DHE=90 độ

  AH=HD

 => tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)

=>AC=DC (2 cạnh tương ứng)

Xét tam giác ACE và tam giác DCE có

  AE= DE (cmt)

  AC= DC(cmt)

  CE chung

 => tam giác ACE= tam giác DCE(c.c.c)

 => góc EAC= góc EDC (2 góc tương ứng)

  

2 tháng 1 2022

d)Ta có: C,E,B thẳng hàng

=> góc CEA+ góc AEB= 180 độ

Mà góc CEN và góc AEB là 2 góc đối đỉnh

=>góc AEC+ góc CEN= 180 độ

 => A,E,N thẳng hàng