K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2016

hình bn tự vẽ nhé,mk ko biết vẽ hình trên đây:

a)  Xét tam giác ABC vuông ở A có:

AB2+AC2=BC2 (đ/l pytago)

=>AC2=BC2-AB2=152-92=144

=>AC=12(cm)

Vì AC>AB (12cm>9cm)

=>^ABC>^ACB (đ/l về góc đối diện.....)

b Vì AB _|_ AC (tam giác ABC vuông tại A)

mà AD là tia đối tia AB=>AD _|_ AC

Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A có:

AC:cạnh chung

AB=AD (A là trung điểm của BD)

=>tam giác ABC=tam giác ADC (2 cạnh góc vuông)

 

 

19 tháng 5 2016

a. Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có:

BC2=AB2+AC2

152 = 92 +AC2

AC2 =152-92=144

AC=12 (cm)

Xét tam giác ABC: AC > AB (12 cm >9cm)

=> góc ABC>góc ACB ( quan hệ giữa góc và cạnh đối diện)

b. Ta có: góc BAC + góc DAC = 180* ( hai góc kề bù)

                   90*     + góc DAC = 180*

=> góc DAC =180*-90*=90*

=> tam giác ADC vuông tại A.

Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A, ta có:

AB = AD (A là trung điểm của BD)

AC là cạnh chung

=> tam giác ABC= tam giác ADC ( hai cạnh góc vuông)

=> BC = DC ( hai cạnh tương ứng)

=> tam giác BDC cân tại C.

c. A là trung điểm của BD => CA là đường trung tuyến của tam giác BDC.

   K là trung điểm của BC => DK là đường trung tuyến của tam giác BDC.

CA cắt t DK tại M=> M là trọng tâm của tam giác BDC.

=> CM =2/3CA    

     CM =2/3.12

     CM = 8 (cm)

Vậy CM=8 cm

25 tháng 3 2017

a, ta có:

         BC2=AB2+AC2

thay  152=92+AC2

        225=81+AC2

       AC2=144

       AC=12

  Vậy cạnh AC=12cm

 Mà AC > AB(vì 12>9)

=>góc ABC > góc ACB(Đ/lí góc đối diện vs cạnh lớn hơn)

b,ta có:BA=DA(vì A là trung điểm của BD)

xét tam giác BCA và tam giácDCA

có:BA=DA(C/m trên)

    góc BAC=góc DAC (=900)

    AC là cạnh chung

=>tam giác BCA=tam giác DCA(c.g.c)

=>BC=DC(2 cạnh t/ứng)

=>tam giác BDC cân tại C

mk chỉ làm đc thế thôi

ok

9 tháng 5 2016

áp dụng định lý Pi-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\)

\(BC^2-AB^2=AC^2\)

\(15^2-9^2=AC^2\)

\(144=AC^2\)

\(AC=12\)(cm)

b)Có BC<AC<AB

=>A<B<C

c) xét tam giác CAB và tam giác CAD có :

CA chung

DA=AB

 góc CAB= gócCAD=90 độ

=>tam giác CAB=tam giác CAD(2 cạnh góc vuông)

=>CB=CD(2 cạnh tương ứng )

=>tam giác BCD cân

d) vì  A là trung điểm BD=>DA=DB=>CA là đường trung tuyến DB (1)

có K là trung điểm cạnh BC=>KB=KC=\(\frac{1}{2}\)BC=\(\frac{15}{2}\)=7,5 (cm) (2)

Từ (1) và(2)=>CA =CK=7,5(cm)(trong 1 tam giác vuông đường trung tuyến bằng 1 nửa cạnh huyền)

Từ (1) =>CM=\(\frac{2}{3}\)CA

         =>CM=\(\frac{2}{3}\times7,5\)

        =>CM=5(cm) 

19 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

            \(BC^2\)=\(AB^2+AC^2\)

=>    \(AC^2=BC^2-AB^2\)

=>    \(AC^2=100-36\)

=>    \(AC^2=64\)cm => AC=8 cm

vậy AC=8 cm

vì BC>AC>AB(10cm>8cm>6cm)

=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm

b, Xét 2 t.giác vuông BCA và DCA có:

               AB=AD(gt)

              AC cạnh chung

=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)

=> BC=DC(2 cạnh tương ứng)

=>t.giác BCD cân tại C (đpcm)

19 tháng 4 2019

c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M

=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)

=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm

vậy MC\(\approx\)5,3 cm

20 tháng 3 2018

xem trên mạng

26 tháng 4 2021

Chưa chắc đã có mà xem 

19 tháng 8 2018

a/   áp dụng định lý py - ta - go vào tam giác ABC vuông tại A có :

             AB2  +AC= BC2

         <=> 6+AC2 = 102

         <=> AC2 = 64

         <=> AC=8 (cm )

ta có AB < AC < BC (6 < 8 < 10 )

=> \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\) ( quan hệ giữa góc và cạnh )

b/   xét tam giác CAB và CAD có

         CA chung

         AB = AD ( vì A là trung điểm của BD )

       \(\widehat{CAB}=\widehat{CAD}\)( = 90 độ )

=> tam giác CAB = tam giác CAD ( c - g - c )

=> CB = CD

=> tam giác BCD cân tại C

các câu còn lại mk k biết làm dâu 

học tốt

3 tháng 6 2017

A B C D K Q M 1 2 1

a) Có: Tam giác ABC vuông tại A => AB2+AC2=BC2 (ĐL Pytago) <=> AC2=BC2-AB2 => AC2=102-62

=> AC2=100-36=64 => AC2=82 =>AC=8 (cm)

=> AB<AC<BC => ^BAC>^ABC>^ACB (Quan hệ giữa góc và cạnh đối xứng trong tam giác)

b) ^A=900, A là trung điểm của BD => AC là trung trực của đoạn thẳng BD => CB=CD (Tính chất đường trung trực)

 => Tam giác BCD cân tại C (đpcm) 

c) Xét tam giác BCD: A là trung điểm của BD, K là trung điểm của BC, AC giao DK tại M.

=> M là trọng tâm của tam giác BCD => MC=2/3AC (T/c 3 đường trung tuyến) => MC=2/3.8\(\approx\)5,3 (cm)

d) \(\Delta\)ABC=\(\Delta\)ADC (c.g.c) => ^C1=^C2 (2 góc tương ứng) (1)

Điểm Q thuộc trung trực của AC => QA=QC => Tam giác AQC cân tại Q => ^A1=^C(2)

Từ (1) và (2) => ^C2=^A1. Mà 2 góc đó nằm ở vị trí so le trong => AQ//BC

Lại có: AQ//BC và A là trung điểm của BD => AQ là đường trung bình của tam giác BCD.

=> Q là trung điểm của DC => BQ là trung tuyến của tam giác BCD. Mà M là trọng tâm của tam giác BCD

=> BQ đi qua điểm M hay 3 điểm B,M,Q thẳng hàng (đpcm) .

3 tháng 6 2017

a, AB2 + AC2 = BC2    \(\Rightarrow\) AC= BC - AB2    hay  AC 2 = 10 2 - 62 = 64 \(\Rightarrow\)AC = \(\sqrt{\left(64^{ }\right)^2}\)\(\Rightarrow\) AC = 8

 SO SÁNH : AB < AC < BC ( 6 < 8 < 10 )

b, xét \(\Delta\)ABC ( \(\widehat{BAC}\)= \(90^0_{ }\)) =và \(\Delta\)ADC (\(\widehat{DAC}\)= 90 độ) 

AB = AD ( A là trung điểm BD )

AC : cạnh chung

\(\Rightarrow\)\(\Delta\)ABC =    \(\Delta\)ADC ( 2 cạnh góc vuông )

\(\Rightarrow\)BC = DC ( 2 cạnh tương ứng )

\(\Rightarrow\)\(\Delta\)BCD cân

 ý c với d mình đang nghĩ đới nhá ^_^