Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Áp dụng định lí pytago vào tg ABC
AB^2+AC^2=BC^2
<=> 3^2+4^2=BC^2
=> BC=5
Áp dụng hệ thức 4
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\frac{1}{AH^2}=\frac{1}{3^2}+\frac{1}{4^2}\)
\(\frac{1}{AH^{^2}}=\frac{25}{144}\)
\(\Rightarrow AH^2=5.76\)
\(\Rightarrow AH=2.4\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4(cm)
b) Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\)
hay \(\widehat{B}\simeq53^0\)
\(\Leftrightarrow\widehat{C}=37^0\)
c) Xét ΔABC có AE là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Tự vẽ hình:
a) Ta có: Áp dụng định lý Pytago:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=5^2-3^2=16=4^2\)
\(\Rightarrow AC=4\left(cm\right)\)
Từ đó ta dễ dàng tính được: \(AH.BC=AB.AC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\left(cm\right)\)
A B C H E
a) BC2=32 +42=25=52
=>BC=5
Ta có: BC.AH=AB.AC=2SABC=>5.AH=3.4=>AH=2,4
b)(Tớ ko bik. Hình như là dùng cos sin tan )
c)Ta có: \(\frac{BE}{AB}=\frac{CE}{AC}\)(Tính chất đường phân giác)
=>\(\frac{BE}{AB}=\frac{CE}{AC}=\frac{BE+CE}{AB+AC}=\frac{5}{7}\)
=>BE=AB.5:7=15:7=2,14
=>CE=5-2.14=2,86
a/ Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
\(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}cm\)
b/ \(sinB=\frac{AC}{BC}=\frac{4}{5}\Rightarrow B\approx53^0\)
\(sinC=\frac{AB}{BC}=\frac{3}{5}\Rightarrow C\approx37^0\)
c/ Vì AE là tia phân giác trong góc A nên ta có:
\(\frac{EB}{EC}=\frac{AB}{AC}=\frac{3}{4}\Rightarrow EB=\frac{3}{7}BC=\frac{3}{7}.5=\frac{15}{7}cm\)
\(EC=BC-EB=5-\frac{15}{7}=\frac{20}{7}cm\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ